Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
User researchUser research focuses on understanding user behaviors, needs and motivations through interviews, surveys, usability evaluations and other forms of feedback methodologies. It is used to understand how people interact with products and evaluate whether design solutions meet their needs. This field of research aims at improving the user experience (UX) of products, services, or processes by incorporating experimental and observational research methods to guide the design, development, and refinement of a product.
DidacticielUn didacticiel (contraction de « didactique » et « logiciel ») peut désigner deux choses : un programme informatique relevant de l'enseignement assisté par ordinateur (EAO) ; plus précisément, il s'agit d'un logiciel interactif destiné à l'apprentissage des savoirs (et plus rarement de savoir-faire) sur un thème ou un domaine donné et incluant généralement un auto-contrôle de connaissance ; la DGLF préconise dans le sens strict l'emploi de l'expression « logiciel éducatif » ; on parle aussi de tutoriel.
ApprentissageL’apprentissage est un ensemble de mécanismes menant à l'acquisition de savoir-faire, de savoirs ou de connaissances. L'acteur de l'apprentissage est appelé apprenant. On peut opposer l'apprentissage à l'enseignement dont le but est de dispenser des connaissances et savoirs, l'acteur de l'enseignement étant l'enseignant.
Test utilisateurUn test utilisateur, ou test d’utilisabilité, est une méthode permettant d'évaluer un produit en le faisant tester par des utilisateurs. Le plus souvent, il s'agit de produits du domaine informatique (par exemple : un logiciel ou un site web) dans le cadre de l'intervention ergonomique. Elle est considérée comme une démarche indispensable dans la conception de produit, car la plus efficace pour évaluer l'ergonomie d'une application ou d'un site web.
User experience designUser experience design (UX design, UXD, UED, or XD) is the process of defining the experience a user would go through when interacting with a company, its services, and its products. Design decisions in UX design are often driven by research, data analysis, and test results rather than aesthetic preferences and opinions. Unlike user interface design, which focuses solely on the design of a computer interface, UX design encompasses all aspects of a user's perceived experience with a product or website, such as its usability, usefulness, desirability, brand perception, and overall performance.
IngénierieL'ingénierie est l'ensemble des fonctions qui mènent de la conception et des études, de l'achat et du contrôle de fabrication des équipements, à la construction et à la mise en service d'une installation technique ou industrielle. Par extension, le terme est aussi souvent utilisé dans d'autres domaines : on parle par exemple d'ingénierie informatique ou d'ingénierie financière.
Learning management systemEn technologies de l'information et de la communication, un learning management system (LMS) ou learning support system (LSS) est un logiciel qui accompagne et gère un processus d'apprentissage ou un parcours pédagogique. En français, on parle de « plateforme d'apprentissage », « système de gestion de l'apprentissage », « centre de formation virtuel », « plate-forme e-learning », « formation ouverte et à distance » (FOAD) ou « formation en ligne », et, particulièrement au Québec, d'« environnement numérique d'apprentissage » (ENA).
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Apprentissage par problèmesDans l'apprentissage par problèmes (APP), ou apprentissage par résolution de problèmes, les apprenants, regroupés par équipes, travaillent ensemble à résoudre un problème généralement proposé par l'enseignant, problème pour lequel ils n'ont reçu aucune formation particulière, de façon à faire des apprentissages de contenu et de savoir-faire, à découvrir des notions nouvelles de façon active (il s’instruit lui-même) en y étant poussé par les nécessités du problème soumis.