Mathématiques des origamisLes pliages d'origamis sont utilisés en mathématiques pour procéder à des constructions géométriques. Selon les méthodes de pliages utilisées, on obtient des procédés plus riches que ceux propres à la règle et au compas. Le formalisme auquel il est le plus souvent fait référence est celui de Huzita. Il contient 6 axiomes qui sont en fait les 6 pliages de base permettant de décomposer n'importe quel origami. En voici la liste : Huzita axiom 1.png |'''Axiome 1.''' Un unique pli passe par deux points p_1 et p_2 spécifiés.
Géométrie euclidienneLa géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire. La conception de la géométrie est intimement liée à la vision de l'espace physique ambiant au sens classique du terme.
DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).
Trois dimensionsTrois dimensions, tridimensionnel ou 3D sont des expressions qui caractérisent l'espace qui nous entoure, tel que perçu par notre vision, en ce qui concerne la largeur, la hauteur et la profondeur. Le terme « 3D » est également (et improprement) utilisé (surtout en anglais) pour désigner la représentation en (numérique), le relief des images stéréoscopiques ou autres , et même parfois le simple effet stéréophonique, qui ne peut par construction rendre que de la 2D (il ne s'agit donc que du calcul des projections perspectives, des ombrages, des rendus de matières).
Origamivignette|Boites d'origamis. L' est l'art du pliage du papier. Le mot vient du japonais — qui l'aurait lui-même emprunté au chinois (折紙/折纸, pinyin zhézhǐ « plier du papier » —, la tradition japonaise de cet art ayant fortement influencé son histoire en Occident. C'est un des plus anciens arts populaires, au , en Chine. Il y est appelé zhézhǐ (折紙/折纸), et daterait de la dynastie des Han de l'Ouest (−202 – 9) ; il aurait été apporté au Japon par des moines bouddhistes via Koguryŏ (pays recouvrant les actuelles Corées).
Espace à quatre dimensionsframe|L'équivalent en quatre dimensions du cube est le tesseract. On le voit ici en rotation, projeté dans l'espace usuel (les arêtes représentées comme des tubes bleus sur fond noir).|alt=Animation d'un tesseract (les arêtes représentées comme des tubes bleus sur fond noir). En mathématiques, et plus spécialement en géométrie, l'espace à quatre dimensions (souvent abrégé en 4D ; on parlera par exemple de rotations en 4D) est une extension abstraite du concept de l'espace usuel vu comme espace à trois dimensions : tandis que l'espace tridimensionnel nécessite la donnée de trois nombres, appelés dimensions, pour décrire la taille ou la position des objets, l'espace à quatre dimensions en nécessite quatre.
Trisection de l'angleLa trisection de l'angle est un problème classique de mathématiques. C'est un problème géométrique, faisant partie des trois grands problèmes de l'Antiquité, avec la quadrature du cercle et la duplication du cube. Ce problème consiste à diviser un angle en trois parties égales, à l'aide d'une règle et d'un compas. Sous cette forme, le problème (comme les deux autres) n'a pas de solution, ce qui fut démontré par Pierre-Laurent Wantzel en 1837.
Inclusion bodiesInclusion bodies are aggregates of specific types of protein found in neurons, a number of tissue cells including red blood cells, bacteria, viruses, and plants. Inclusion bodies of aggregations of multiple proteins are also found in muscle cells affected by inclusion body myositis and hereditary inclusion body myopathy. Inclusion bodies in neurons may be accumulated in the cytoplasm or nucleus, and are associated with many neurodegenerative diseases.
Cross section (geometry)In geometry and science, a cross section is the non-empty intersection of a solid body in three-dimensional space with a plane, or the analog in higher-dimensional spaces. Cutting an object into slices creates many parallel cross-sections. The boundary of a cross-section in three-dimensional space that is parallel to two of the axes, that is, parallel to the plane determined by these axes, is sometimes referred to as a contour line; for example, if a plane cuts through mountains of a raised-relief map parallel to the ground, the result is a contour line in two-dimensional space showing points on the surface of the mountains of equal elevation.
Tétraèdrethumb|Un tétraèdre. thumb|Paul Sérusier, Tétraèdres, vers 1910. En géométrie, les tétraèdres (du grec tétra : quatre) sont des polyèdres de la famille des pyramides, composés de triangulaires, et . Le 3-simplexe est la représentation abstraite du tétraèdre ; dans ce modèle, les arêtes s'identifient aux 6 sous-ensembles à 2 éléments de l'ensemble des quatre sommets, et les faces aux 4 sous-ensembles à 3 éléments. Chaque sommet d'un tétraèdre est relié à tous les autres par une arête, et de même chaque face est reliée à toutes les autres par une arête.