Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this paper, we formally investigate two mathematical aspects of Hermite splines that are relevant to practical applications. We first demonstrate that Hermite splines are maximally localized, in the sense that the size of their support is minimal among pairs of functions with identical reproduction properties. Then, we precisely quantify the approximation power of Hermite splines for the reconstruction of functions and their derivatives. It is known that the Hermite and B-spline approximation schemes have the same approximation order. More precisely, their approximation error vanishes as O(T 4) when the step size T goes to zero. In this work, we show that they actually have the same asymptotic approximation error constants, too. Therefore, they have identical asymptotic approximation properties. Hermite splines combine optimal localization and excellent approximation power, while retaining interpolation properties and closed-form expression, in contrast to existing similar functions. These findings shed a new light on the convenience of Hermite splines in the context of computer graphics and geometrical design.