F-divergenceIn probability theory, an -divergence is a function that measures the difference between two probability distributions and . Many common divergences, such as KL-divergence, Hellinger distance, and total variation distance, are special cases of -divergence. These divergences were introduced by Alfréd Rényi in the same paper where he introduced the well-known Rényi entropy. He proved that these divergences decrease in Markov processes.
Divergence (statistiques)En statistiques, une divergence est une fonction ou une fonctionnelle qui mesure la dissimilarité d'une loi de probabilité par rapport à une autre. Selon le contexte, elles peuvent être définies pour des lois, des mesures positives (non-normalisées), des vecteurs (par exemple sur l'espace des paramètres si l'on considère un modèle paramétrique), ou encore des matrices. Les divergences sont analogues à des distances au carré et permettent de généraliser la notion de distance aux variétés statistiques, mais il s'agit d'une notion plus faible dans la mesure où elles ne sont en général pas symétriques et ne vérifient pas l'inégalité triangulaire.
Divergence de Kullback-LeiblerEn théorie des probabilités et en théorie de l'information, la divergence de Kullback-Leibler (ou divergence K-L ou encore entropie relative) est une mesure de dissimilarité entre deux distributions de probabilités. Elle doit son nom à Solomon Kullback et Richard Leibler, deux cryptanalystes américains. Selon la NSA, c'est durant les années 1950, alors qu'ils travaillaient pour cette agence, que Kullback et Leibler ont inventé cette mesure. Elle aurait d'ailleurs servi à la NSA dans son effort de cryptanalyse pour le projet Venona.
Théorie de l'informationLa théorie de l'information, sans précision, est le nom usuel désignant la théorie de l'information de Shannon, qui est une théorie utilisant les probabilités pour quantifier le contenu moyen en information d'un ensemble de messages, dont le codage informatique satisfait une distribution statistique que l'on pense connaître. Ce domaine trouve son origine scientifique avec Claude Shannon qui en est le père fondateur avec son article A Mathematical Theory of Communication publié en 1948.
Distance en variation totale (probabilités)En mathématiques et plus particulièrement en théorie des probabilités et en statistique, la distance en variation totale (ou distance de variation totale ou encore distance de la variation totale) désigne une distance statistique définie sur l'ensemble des mesures de probabilité d'un espace probabilisable. Soit deux mesures de probabilité sur un espace probabilisable . La distance en variation totale entre et est la quantité Il arrive que le facteur 2 n'apparaisse pas chez certains auteurs.
Information mutuelleDans la théorie des probabilités et la théorie de l'information, l'information mutuelle de deux variables aléatoires est une quantité mesurant la dépendance statistique de ces variables. Elle se mesure souvent en bit. L'information mutuelle d'un couple de variables représente leur degré de dépendance au sens probabiliste. Ce concept de dépendance logique ne doit pas être confondu avec celui de causalité physique, bien qu'en pratique l'un implique souvent l'autre.
Ratio distributionA ratio distribution (also known as a quotient distribution) is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two (usually independent) random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution. An example is the Cauchy distribution (also called the normal ratio distribution), which comes about as the ratio of two normally distributed variables with zero mean.
Divergence de BregmanEn mathématiques, la divergence de Bregman est une mesure de la différence entre deux distributions dérivée d'une fonction potentiel U à valeurs réelles strictement convexe et continûment différentiable. Le concept a été introduit par en 1967. Par l'intermédiaire de la transformation de Legendre, au potentiel correspond un potentiel dual et leur différentiation donne naissance à deux systèmes de coordonnées duaux. Soit une fonction à valeurs réelles, strictement convexe et continûment différentiable définie sur un domaine convexe fermé .
Divergence (analyse vectorielle)vignette|Les lignes bleues représentant les gradients de couleur, du plus clair au plus foncé. L'opérateur divergence permet de calculer, localement, la variation de ce gradient de couleur vignette|Illustration de la divergence d'un champ vectoriel, ici champ de vitesse converge à gauche et diverge à droite. En géométrie, la divergence d'un champ de vecteurs est un opérateur différentiel mesurant le défaut de conservation du volume sous l'action du flot de ce champ.
Distance de HellingerEn Théorie des probabilités, pour toutes mesures de probabilités et absolument continues par rapport à une troisième mesure , le carré de la distance de Hellinger entre et est donné par : où et désignent respectivement les dérivées de Radon-Nykodym de et . Cette définition ne dépend pas de , si bien que la distance de Hellinger entre et ne change pas si est remplacée par une autre mesure de probabilité par rapport à laquelle et soient absolument continues.