RadiotraceurUn radiotraceur est une entité composée d’une molécule vectrice et d’un isotope radioactif détectable à l’aide de dispositifs tels que les gamma-caméras ou la tomographie par émission de positons. En biologie, Il doit être spécifique d'un organe, d'une fonction ou d'une pathologie. Il doit avoir le même comportement métabolique que la molécule vectrice et doit être utilisé en faible quantité (dose traceuse) pour ne pas perturber le mécanisme étudié.un radiotraceur doit également être stable dans l’organisme et détectable de manière externe via des détecteurs.
Technétium 99mLe technétium 99m, noté Tc, est un isomère nucléaire de l'isotope du technétium dont le nombre de masse est égal à 99. Il est utilisé en médecine nucléaire pour effectuer de nombreux diagnostics. Le noyau atomique du Tc compte et avec un spin 1/2- pour une masse atomique de . Il est caractérisé par un excès de masse de , une énergie de liaison nucléaire de et une énergie d'excitation de . Un gramme de présente une radioactivité de .
Microscope électroniquethumb|Microscope électronique construit par Ernst Ruska en 1933.thumb|Collection de microscopes électroniques anciens (National Museum of Health & Medicine). Un microscope électronique (ME) est un type de microscope qui utilise un faisceau d'électrons pour illuminer un échantillon et en créer une très agrandie. Il est inventé en 1931 par des ingénieurs allemands. Les microscopes électroniques ont un pouvoir de résolution supérieur aux microscopes optiques qui utilisent des rayonnements électromagnétiques visibles.
TechnétiumLe technétium est l'élément chimique de numéro atomique 43, de symbole Tc. Le technétium est l'élément le plus léger ne possédant pas d'isotope stable. Les propriétés chimiques de ce métal de transition radioactif de couleur gris métallique, rarement présent dans la nature, sont intermédiaires entre celles du rhénium et du manganèse. Son nom provient du grec , « artificiel » : il a été le premier élément chimique produit artificiellement. Le technétium est aussi le plus léger des éléments découverts par création artificielle.
Technétium 99Le technétium 99, noté Tc, est l'isotope du technétium dont le nombre de masse est égal à 99 : son noyau atomique compte et avec un spin 9/2+ pour une masse atomique de . Il est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . Un gramme de technétium 99 présente une radioactivité de . C'est un radioisotope, qui connaît une désintégration β de faible intensité en avec une période radioactive de et une énergie de désintégration de : ⟶ + e + .
Déchet radioactifUn déchet radioactif est un déchet qui, du fait du niveau de sa radioactivité, nécessite des mesures de radioprotection particulières. Ces déchets doivent réglementairement faire l'objet d'une caractérisation radiologique (par le producteur de déchets) et d'un contrôle (par le centre de stockage), afin d'assurer que leur stockage est adapté à leur radioactivité éventuelle, et ne crée pas de risque radiologique.
Solubilitévignette|La réaction de précipitation, effectuée à partir d'une solution ou d'une suspension, forme un précipité et un liquide surnageant, observés ici dans un tube à essai. La solubilité est la capacité d'une substance, appelée soluté, à se dissoudre dans une autre substance, appelée solvant, pour former un mélange homogène appelé solution. La dissolution désigne ce processus. En thermodynamique, la solubilité massique est une grandeur physique notée s désignant la concentration massique maximale du soluté dans le solvant, à une température donnée.
Microscopie électronique à balayagethumb|right|Premier microscope électronique à balayage par M von Ardenne thumb|right|Microscope électronique à balayage JEOL JSM-6340F thumb|upright=1.5|Principe de fonctionnement du Microscope Électronique à Balayage La microscopie électronique à balayage (MEB) ou scanning electron microscope (SEM) en anglais est une technique de microscopie électronique capable de produire des images en haute résolution de la surface d’un échantillon en utilisant le principe des interactions électrons-matière.
Spectroscopie des rayons XLa spectroscopie des rayons X rassemble plusieurs techniques de caractérisation spectroscopique de matériaux par excitation par rayons X. Trois familles de techniques sont le plus souvent utilisées. Selon les phénomènes mis en jeu, on distingue trois classes : L'analyse se fait par l'une des deux méthodes suivantes : analyse dispersive en énergie (Energy-dispersive x-ray analysis (EDXA) en anglais) ; analyse dispersive en longueur d'onde (Wavelength dispersive x-ray analysis (WDXA) en anglais).
SulfureEn chimie, un sulfure est un composé chimique où le soufre, avec un degré d'oxydation de −II, est combiné à un autre élément chimique ou un de ses radicaux. Certains composés covalents du soufre, tels le disulfure de carbone et le sulfure d'hydrogène , sont également considérés comme des sulfures. Les thioéthers, des composés organiques de la forme R-S-R' où R et R' sont des groupes fonctionnels carbonés, sont également désignés comme des sulfures ou (si R et R' sont des alkyles) des dialkyl sulfures.