p-NiO junction termination extensions for GaN power devices
Publications associées (32)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Electrification of the energy section, from generation to end-use, plays an essential role in reducing global CO2 emission. Innovations in power electronics are required to increase conversion efficiency and power density. Gallium nitride (GaN) transistors ...
GaN metal-oxide-semiconductor high electron mobility transistors (MOS)HEMTs) offer outstanding properties for next-generation power electronics devices. The high conductivity, high voltage blocking capability, high operation frequency, and device-level int ...
EPFL2022
, ,
In this work, we present a concept that leverages the strong piezoelectric polarization field in InGaN, which counteracts the external electric field at reverse bias. We show that despite the smaller InGaN band-gap and lower critical electric field, its st ...
2024
Gallium Nitride (GaN) has enabled groundbreaking developments in the field of optoelectronics and radio frequency communication. More recently, GaN devices for power conversion applications have demonstrated excellent potential. Thanks to Gallium Nitride w ...
Gallium Nitride (GaN) is a wonder material which has widely transformed the world by enabling
energy-efficient white light-emitting diodes. Over the past decade, GaN has also emerged as one
of the most promising materials for developing power devices which ...
The outstanding properties of Gallium Nitride (GaN) have enabled considerable improvements in the performance of power devices compared to traditional silicon technology, resulting in more efficient and highly compact power converters. GaN power technology ...
The international actions against global warming demands reductions in carbon emission and more efficient use of energy. Energy efficiency in the conversion and use of electricity, as an important form of energy in the modern life, has strong environmental ...
Gallium Nitride (GaN) is one of the most promising materials for high frequency power switching due to its exceptional properties such as large saturation velocity, high carrier mobility, and high breakdown field strength. The high switching frequency of G ...
Over the last decade, gallium nitride (GaN) has emerged as an excellent material for the fabrication of power devices. Among the semiconductors for which power devices are already available in the market, GaN has the widest energy gap, the largest critical ...
III-N family of materials has offered multiple groundbreaking technologies in the field of optoelectronics and high-power radio-frequency (RF) devices. Blue light-emitting diodes (LEDs) have revolutionized low-energy lighting. Gallium nitride (GaN) RF mark ...