Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Transformeurvignette|Schéma représentant l'architecture générale d'un transformeur. Un transformeur (ou modèle auto-attentif) est un modèle d'apprentissage profond introduit en 2017, utilisé principalement dans le domaine du traitement automatique des langues (TAL). Dès 2020, les transformeurs commencent aussi à trouver une application en matière de vision par ordinateur par la création des vision transformers (ViT).
Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
H.265H.265, ou « MPEG-H HEVC » (High Efficiency Video Coding), est une norme de codage/compression vidéo ISO/CEI 23008-2 et UIT-T H.265, publiée le . Elle est développée conjointement par les groupes Video Coding Experts Group (VCEG) et Moving Picture Experts Group (MPEG) et doit succéder au H.264 (ISO/CEI 14496-10 et UIT-T H.264). Ses applications concernent aussi bien la compression des vidéos en ultra-haute définition que la diminution du débit de transmission sur les réseaux pour les vidéos en définition standard avec des applications pour la vidéo sur mobile et pour l'extension de l'éligibilité aux services audiovisuels (TV, VoD.
Quantification vectorielleLa quantification vectorielle est une technique de quantification souvent utilisée dans la compression de données avec pertes de données (Lossy Data Compression) pour laquelle l'idée de base est de coder ou de remplacer par une clé des valeurs d'un espace vectoriel multidimensionnel vers des valeurs d'un sous-espace discret de plus petite dimension. Le vecteur de plus petit espace nécessite moins d'espace de stockage et les données sont donc compressées.
Wavelet transformIn mathematics, a wavelet series is a representation of a square-integrable (real- or complex-valued) function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform. A function is called an orthonormal wavelet if it can be used to define a Hilbert basis, that is a complete orthonormal system, for the Hilbert space of square integrable functions.
Video Coding Experts GroupThe Video Coding Experts Group or Visual Coding Experts Group (VCEG, also known as Question 6) is a working group of the ITU Telecommunication Standardization Sector (ITU-T) concerned with standards for compression coding of video, images, audio, and other signals. It is responsible for standardization of the "H.26x" line of video coding standards, the "T.8xx" line of image coding standards, and related technologies.
Compression artifactA compression artifact (or artefact) is a noticeable distortion of media (including , audio, and video) caused by the application of lossy compression. Lossy data compression involves discarding some of the media's data so that it becomes small enough to be stored within the desired or transmitted (streamed) within the available bandwidth (known as the data rate or bit rate). If the compressor cannot store enough data in the compressed version, the result is a loss of quality, or introduction of artifacts.
Taux de compression de donnéesLe taux de compression est une mesure de la performance d'un algorithme de compression de données informatiques. Il est généralement exprimé en pourcentage et noté τ. Deux définitions sont communément admises : L'une définit le taux de compression comme le rapport du volume des données après compression sur le volume initial des données. De ce fait, plus le taux de compression est faible, plus la taille du fichier compressé résultant est faible. Le taux de compression ainsi défini est donné par la formule : τ = [Volume final] / [Volume initial].
Ondelettethumb|Ondelette de Daubechies d'ordre 2. Une ondelette est une fonction à la base de la décomposition en ondelettes, décomposition similaire à la transformée de Fourier à court terme, utilisée dans le traitement du signal. Elle correspond à l'idée intuitive d'une fonction correspondant à une petite oscillation, d'où son nom. Cependant, elle comporte deux différences majeures avec la transformée de Fourier à court terme : elle peut mettre en œuvre une base différente, non forcément sinusoïdale ; il existe une relation entre la largeur de l'enveloppe et la fréquence des oscillations : on effectue ainsi une homothétie de l'ondelette, et non seulement de l'oscillation.