Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We use Mellin space dispersion relations together with Polyakov conditions to derive a family of sum rules for Conformal Field Theories (CFTs). The defining property of these sum rules is suppression of the contribution of the double twist operators. Firstly, we apply these sum rules to the Wilson-Fisher model in d = 4 - epsilon dimensions. We re-derive many of the known results to order epsilon(4) and we make new predictions. No assumption of analyticity down to spin 0 was made. Secondly, we study holographic CFTs. We use dispersive sum rules to obtain tree-level and one-loop anomalous dimensions. Finally, we briefly discuss the contribution of heavy operators to the sum rules in UV complete holographic theories.
Riccardo Rattazzi, Alexander Monin, Gil Badel
, , ,