Graph rewritingIn computer science, graph transformation, or graph rewriting, concerns the technique of creating a new graph out of an original graph algorithmically. It has numerous applications, ranging from software engineering (software construction and also software verification) to layout algorithms and picture generation. Graph transformations can be used as a computation abstraction. The basic idea is that if the state of a computation can be represented as a graph, further steps in that computation can then be represented as transformation rules on that graph.
Théorie spectrale des graphesEn mathématiques, la théorie spectrale des graphes s'intéresse aux rapports entre les spectres des différentes matrices que l'on peut associer à un graphe et ses propriétés. C'est une branche de la théorie algébrique des graphes. On s'intéresse en général à la matrice d'adjacence et à la matrice laplacienne normalisée. Soit un graphe , où désigne l'ensemble des sommets et l'ensemble des arêtes. Le graphe possède sommets, notés et arêtes, notées .
Base de données orientée grapheUne base de données orientée graphe est une base de données orientée objet utilisant la théorie des graphes, donc avec des nœuds et des arcs, permettant de représenter et stocker les données. Par définition, une base de données orientée graphe correspond à un système de stockage capable de fournir une adjacence entre éléments voisins : chaque voisin d'une entité est accessible grâce à un pointeur physique. C'est une base de données orientée objet adaptée à l'exploitation des structures de données de type graphe ou dérivée, comme des arbres.
Théorie des graphes extrémauxEn théorie des graphes, un graphe extrémal (anglais : extremal graph) par rapport à une propriété est un graphe tel que l'ajout de n'importe quelle arête amène le graphe à vérifier la propriété . L'étude des graphes extrémaux se décompose en deux sujets : la recherche de bornes inférieures sur le nombre d'arêtes nécessaires à assurer la propriété (voire sur d'autres paramètres comme le degré minimum) et la caractérisation des graphes extrémaux proprement dits. L'étude des graphes extrémaux est une branche de l'étude combinatoire des graphes.
Tracé de graphesEn théorie des graphes, le tracé de graphes consiste à représenter des graphes dans le plan. Le tracé de graphes est utile à des applications telles que la conception de circuits VLSI, l'analyse de réseaux sociaux, la cartographie, et la bio-informatique. Les graphes sont généralement représentés en utilisant des points, disques ou boites pour représenter les sommets, et des courbes ou des segments pour représenter les arêtes. Pour les graphes orientés, on utilise habituellement ses flèches en bout d'arête pour représenter l'orientation.
Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
TractographieEn neurosciences, la tractographie est une méthode utilisée pour mettre en évidence les voies neuronales. Elle utilise une technique spéciale d’ avec une technique particulière du tenseur de diffusion. Les résultats sont présentés sous forme d'images deux et trois dimensions. En plus des longues voies qui connectent le cerveau au reste du corps, on trouve un réseau 3D complexe formé de courtes connexions entre les différentes régions corticales et sous-corticales.
ConnectomiqueLa connectomique est l'établissement et l'étude du connectome, c'est-à-dire de l'ensemble des connexions neuronales du cerveau. La connectomique est la production et l'étude des connectomes : des cartes complètes des connexions au sein du système nerveux d'un organisme. Plus généralement, on peut considérer qu'il s'agit de l'étude des schémas de câblage neuronaux, en mettant l'accent sur la façon dont la connectivité structurelle, les synapses individuelles, la morphologie et l'ultrastructure cellulaires contribuent à la constitution d'un réseau.
Scissure longitudinaleThe longitudinal fissure (or cerebral fissure, great longitudinal fissure, median longitudinal fissure, interhemispheric fissure) is the deep groove that separates the two cerebral hemispheres of the vertebrate brain. Lying within it is a continuation of the dura mater (one of the meninges) called the falx cerebri. The inner surfaces of the two hemispheres are convoluted by gyri and sulci just as is the outer surface of the brain.
Lésion cérébraleUne lésion cérébrale est une lésion qui touche le cerveau. En général, il s'agit d'une destruction plus ou moins étendue du tissu nerveux entraînant un déficit dans la perception, la cognition, la sensibilité ou la motricité en fonction du rôle que jouait la région atteinte dans l'architecture neurocognitive. Cette lésion peut être de nature diverse : ischémique, hémorragique, compressive par un processus extensif de type tumoral ou un hématome.