Publication

Polarity Of Almost All Points For Systems Of Nonlinear Stochastic Heat Equations In The Critical Dimension

Robert Dalang
2021
Article
Résumé

We study vector-valued solutions u(t, x) is an element of R-d to systems of nonlinear stochastic heat equations with multiplicative noise, partial derivative/partial derivative t u(t, x) = partial derivative(2)/partial derivative x(2) u(t, x) + sigma (u(t, x)(W) over dot (t, x). Here, t >= 0, x is an element of R and (W) over dot (t, x) is an R-d-valued space-time white noise. We say that a point z is an element of R-d is polar if P{u(t, x) = z for some t > 0 and x is an element of R} = 0. We show that, in the critical dimension d = 6, almost all points in R-d are polar.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.