Coloration gloutonnedroite|vignette|upright=1.4| Deux colorations gloutonnes du même graphe couronne pour des ordres différents sur les sommets. La numérotation de droite se généralise aux graphes bicolores à n sommets, et l'algorithme glouton utilise couleurs. Dans l'étude des problèmes de coloration de graphes en mathématiques et en informatique, une coloration gloutonne ou coloration séquentielle est une coloration des sommets d'un graphe obtenue par un algorithme glouton qui examine les sommets du graphe en séquence et attribue à chaque sommet la première couleur disponible.
Competitive analysis (online algorithm)Competitive analysis is a method invented for analyzing online algorithms, in which the performance of an online algorithm (which must satisfy an unpredictable sequence of requests, completing each request without being able to see the future) is compared to the performance of an optimal offline algorithm that can view the sequence of requests in advance. An algorithm is competitive if its competitive ratio—the ratio between its performance and the offline algorithm's performance—is bounded.
Sommet (géométrie)vignette|droite|Le sommet d'un angle est le point d'intersection où se réunissent deux segments de droites. En géométrie, un sommet est un point particulier d'une figure : un sommet d'un polygone, d'un polyèdre, ou plus généralement d'un polytope, est un 0-simplexe de celui-ci ; c'est l'extrémité d'au moins une arête (par analogie, on parle aussi de sommets en théorie des graphes) ; dans un polyèdre, en chaque sommet, convergent au moins trois faces et un nombre égal d'arêtes (voir aussi le théorème de Descartes-Euler, qui relie le nombre de sommets, d'arêtes et de faces d'un polyèdre) ; le sommet d'un angle est le point d'intersection des deux côtés de cet angle ; le sommet d'un cône est le point d'intersection de toutes les génératrices de ce cône.
IcositétrachoreL'icositétrachore, ou « 24-cellules » est un 4-polytope régulier convexe. Il est spécifique à la dimension 4 dans le sens où il ne possède aucun équivalent dans une autre dimension. On le dénomme aussi « 24-cellules », « icositétratope », ou « hypergranatoèdre ». On peut définir un icositétrachore dans au moyen des sommets de coordonnées , ainsi que ceux obtenus en permutant ces coordonnées. Ils sont au nombre de 24.
PentagoneEn géométrie, un pentagone est un polygone à cinq sommets, donc cinq côtés et cinq diagonales. Un pentagone est soit simple (convexe ou concave), soit croisé. Le pentagone régulier étoilé est le pentagramme. Le terme « pentagone » dérive du latin pentagonum de même sens, substantivation de l'adjectif pentagonus, lui-même emprunté au grec ancien, πεντάγωνος (pentágônos), « pentagonal », « qui a cinq angles, cinq côtés ». Le terme grec est lui-même construit à partir de πέντε (pénte), « cinq », et γωνία (gônía), « angle ».
Algorithme hongroisvignette|Exemple de graphe biparti pondéré (oublions l'agent 3). L'objectif de l'algorithme hongrois est de calculer un couplage parfait (chaque agent a une unique tâche, et chaque tâche est assignée à un agent) de poids minimum (somme des arêtes en rouge minimale). L'algorithme hongrois ou méthode hongroise, aussi appelé algorithme de Kuhn-Munkres, est un algorithme d'optimisation combinatoire, qui résout le problème d'affectation en temps polynomial.
Algorithme d'Edmonds pour les couplagesEn informatique, plus précisément en théorie des graphes, l'algorithme d'Edmonds pour les couplages (blossom algorithm en anglais), aussi connu sous le nom d'algorithme des fleurs et des pétales est un algorithme pour construire des couplages maximaux sur les graphes. L'algorithme a été développé par Jack Edmonds en 1961, et publié en 1965. Étant donné un graphe quelconque G = (V, E), l'algorithme trouve un couplage M tel que chaque sommet de V est incident à au plus une arête dans E et M est de cardinal maximal.