Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Économies d'énergieLes économies d'énergie sont les gains obtenus en réduisant la consommation d'énergie ou les pertes sur l'énergie produite. Les économies d'énergie sont devenues un objectif important des pays fortement consommateurs d'énergie vers la fin du , notamment après le choc pétrolier de 1973 puis à partir des années 1990, afin de répondre à plusieurs inquiétudes : la crainte d'un épuisement des ressources naturelles, particulièrement des combustibles fossiles ; le réchauffement climatique résultant des émissions de gaz à effet de serre ; les problèmes politiques et de sécurité d'approvisionnement dus à l'inégale répartition des ressources sur la planète ; le coût de l'énergie que la combinaison de ces phénomènes peut faire augmenter.
Stratégie de régulationUne stratégie (ou topologie) de régulation est, pour un procédé industriel, l'organisation du système de contrôle-commande en vue de maintenir une grandeur physique dans une plage de tolérance donnée. Le choix de stratégie est très important dans les industries de transformation (par exemple les industries chimiques, papetières, agroalimentaires) en raison de la variabilité d'un nombre élevé de grandeurs physiques incidentes (dites « perturbations ») qui y sont présentes.
Multi-agent reinforcement learningMulti-agent reinforcement learning (MARL) is a sub-field of reinforcement learning. It focuses on studying the behavior of multiple learning agents that coexist in a shared environment. Each agent is motivated by its own rewards, and does actions to advance its own interests; in some environments these interests are opposed to the interests of other agents, resulting in complex group dynamics. Multi-agent reinforcement learning is closely related to game theory and especially repeated games, as well as multi-agent systems.
Reinforcement learning from human feedbackIn machine learning, reinforcement learning from human feedback (RLHF) or reinforcement learning from human preferences is a technique that trains a "reward model" directly from human feedback and uses the model as a reward function to optimize an agent's policy using reinforcement learning (RL) through an optimization algorithm like Proximal Policy Optimization. The reward model is trained in advance to the policy being optimized to predict if a given output is good (high reward) or bad (low reward).
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
OpenAIOpenAI (« AI » pour artificial intelligence, ou intelligence artificielle) est une entreprise spécialisée dans le raisonnement artificiel, à « but lucratif plafonné », dont le siège social est à San Francisco. Avant , elle est reconnue association à but non lucratif. L'objectif de cette société est de promouvoir et de développer un raisonnement artificiel à visage humain qui profitera à toute l'humanité.
Efficacité énergétique (économie)En économie, l’efficacité énergétique ou efficience énergétique désigne l'état de fonctionnement d'un système pour lequel la consommation d’énergie est minimisée pour un service rendu identique. C'est un cas particulier de la notion d’efficience. Elle concerne notamment les transports motorisés, les métiers du bâtiment et l'industrie (ces derniers étant responsables respectivement d'environ 40 % et 25 % de la consommation énergétique totale de l'Union européenne).
Supervision (informatique)La supervision est une technique industrielle de suivi et de pilotage informatique de procédés de fabrication automatisés. La supervision concerne l'acquisition de données (mesures, alarmes, retour d'état de fonctionnement) et des paramètres de commande des processus généralement confiés à des automates programmables. Dans l'informatique, la supervision est la surveillance du bon fonctionnement d’un système ou d’une activité. À ne pas confondre avec l'hypervision, qui elle correspond à la centralisation des outils de supervision, d’infrastructure, d'applications et de référentiels (ex.
Energy consumptionEnergy consumption is the amount of energy used. In the body, energy consumption is part of energy homeostasis. It derived from food energy. Energy consumption in the body is a product of the basal metabolic rate and the physical activity level. The physical activity level are defined for a non-pregnant, non-lactating adult as that person's total energy expenditure (TEE) in a 24-hour period, divided by his or her basal metabolic rate (BMR): Topics related to energy consumption in a demographic sense are: Wo