Subshift of finite typeIn mathematics, subshifts of finite type are used to model dynamical systems, and in particular are the objects of study in symbolic dynamics and ergodic theory. They also describe the set of all possible sequences executed by a finite state machine. The most widely studied shift spaces are the subshifts of finite type. Let V be a finite set of n symbols (alphabet). Let X denote the set V^\Z of all bi-infinite sequences of elements of V together with the shift operator T. We endow V with the discrete topology and X with the product topology.
Limit setIn mathematics, especially in the study of dynamical systems, a limit set is the state a dynamical system reaches after an infinite amount of time has passed, by either going forward or backwards in time. Limit sets are important because they can be used to understand the long term behavior of a dynamical system. A system that has reached its limiting set is said to be at equilibrium.
Stirling numbers of the first kindIn mathematics, especially in combinatorics, Stirling numbers of the first kind arise in the study of permutations. In particular, the Stirling numbers of the first kind count permutations according to their number of cycles (counting fixed points as cycles of length one). The Stirling numbers of the first and second kind can be understood as inverses of one another when viewed as triangular matrices. This article is devoted to specifics of Stirling numbers of the first kind.
Suite arithmétiqueEn mathématiques, une suite arithmétique est une suite (le plus souvent une suite de réels) dans laquelle chaque terme permet de déduire le suivant en lui ajoutant une constante appelée raison. Cette définition peut s'écrire sous la forme d'une relation de récurrence, pour chaque indice n : Cette relation est caractéristique de la progression arithmétique ou croissance linéaire. Elle décrit bien les phénomènes dont la variation est constante au cours du temps, comme l'évolution d'un compte bancaire à intérêts simples.
Nombre sphéniquevignette|70 est un nombre sphénique. Un nombre sphénique est un entier strictement positif qui est le produit de trois facteurs premiers distincts. La définition exige que chacun des trois facteurs premiers ne soit exprimé qu'une seule fois ; par exemple possède bien 3 facteurs premiers, mais n'est pas sphénique car le facteur 2 y est deux fois. Tous les nombres sphéniques ont exactement huit diviseurs.
InvariantEn mathématiques, le mot invariant possède suivant le contexte différentes significations (non équivalentes). Il est utilisé aussi bien en géométrie et en topologie qu'en analyse et en algèbre. Si g : E→E est une application, un invariant de g est un point fixe, c'est-à-dire un élément x de E qui est sa propre image par g : Pour une telle application g, une partie P de E est dite : invariante point par point si tous ses éléments sont des points fixes ; globalement invariante par g, ou stable par g, si , c'est-à-dire : (cette propriété est moins forte que la précédente).
Nombre composéUn nombre composé est un entier naturel différent de 0 qui possède un diviseur positif autre que 1 ou lui-même. Par définition, chaque entier plus grand que 1 est donc soit un nombre premier, soit un nombre composé, et les nombres 0 et 1 ne sont ni premiers ni composés. Autre définition : un nombre composé est le produit d'au moins deux nombres premiers (qu'ils soient distincts ou identiques). Par exemple, l'entier 14 est un nombre composé parce qu'il a les nombres 1, 2, 7 et 14 pour diviseurs (quatre diviseurs).
P-adic valuationIn number theory, the p-adic valuation or p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n. It is denoted . Equivalently, is the exponent to which appears in the prime factorization of . The p-adic valuation is a valuation and gives rise to an analogue of the usual absolute value. Whereas the completion of the rational numbers with respect to the usual absolute value results in the real numbers , the completion of the rational numbers with respect to the -adic absolute value results in the p-adic numbers .
Tribu boréliennevignette|Normal distribution pdf. En mathématiques, la tribu borélienne (également appelée tribu de Borel ou tribu des boréliens) sur un espace topologique est la plus petite tribu sur contenant tous les ensembles ouverts. Les éléments de la tribu borélienne sont appelés des boréliens. Le concept doit son nom à Émile Borel, qui a publié en 1898 une première exposition de la tribu borélienne de la droite réelle. La tribu borélienne peut, de manière équivalente, se définir comme la plus petite tribu qui contient tous les sous-ensembles fermés de .
Nombre eulérienEn mathématiques, et plus précisément en analyse combinatoire, le nombre eulérien A(n, k), est le nombre de permutations des entiers de 1 à n pour lesquelles exactement k éléments sont plus grands que l'élément précédent (permutations avec k « montées » (). Les nombres eulériens sont les coefficients des polynômes eulériens : Ces polynômes apparaissent au numérateur d'expressions liées à la fonction génératrice de la suite . Ces nombres forment la .