Traitement du signalLe traitement du signal est la discipline qui développe et étudie les techniques de traitement, d'analyse et d' des . Parmi les types d'opérations possibles sur ces signaux, on peut dénoter le contrôle, le filtrage, la compression et la transmission de données, la réduction du bruit, la déconvolution, la prédiction, l'identification, la classification Bien que cette discipline trouve son origine dans les sciences de l'ingénieur (particulièrement l'électronique et l'automatique), elle fait aujourd'hui largement appel à de nombreux domaines des mathématiques, comme la , les processus stochastiques, les espaces vectoriels et l'algèbre linéaire et des mathématiques appliquées, notamment la théorie de l'information, l'optimisation ou encore l'analyse numérique.
Filtre adaptatifUn filtre adaptatif est un système avec un filtre linéaire dont la fonction de transfert est contrôlée par des paramètres variables et un moyen d'ajuster ces paramètres selon un algorithme d'optimisation. En raison de la complexité des algorithmes d'optimisation, presque tous les filtres adaptatifs sont des filtres numériques. Les filtres adaptatifs sont nécessaires pour certaines applications parce que certains paramètres du traitement souhaité (par exemple, l'emplacement des surfaces réfléchissantes dans un espace réverbérant) ne sont pas connus à l'avance ou changent.
Rapport signal sur bruitEn électronique, le rapport signal sur bruit (SNR, ) est le rapport des puissances entre la partie du signal qui représente une information et le reste, qui constitue un bruit de fond. Il est un indicateur de la qualité de la transmission d'une information. L'expression d'un rapport signal sur bruit se fonde implicitement sur le principe de superposition, qui pose que le signal total est la somme de ces composantes. Cette condition n'est vraie que si le phénomène concerné est linéaire.
Filtre particulaireLes filtres particulaires, aussi connus sous le nom de méthodes de Monte-Carlo séquentielles, sont des techniques sophistiquées d'estimation de modèles fondées sur la simulation. Les filtres particulaires sont généralement utilisés pour estimer des réseaux bayésiens et constituent des méthodes 'en-ligne' analogues aux méthodes de Monte-Carlo par chaînes de Markov qui elles sont des méthodes 'hors-ligne' (donc a posteriori) et souvent similaires aux méthodes d'échantillonnage préférentiel.
Filtre de Kalmanvignette| Concept de base du filtre de Kalman. En statistique et en théorie du contrôle, le filtre de Kalman est un filtre à réponse impulsionnelle infinie qui estime les états d'un système dynamique à partir d'une série de mesures incomplètes ou bruitées. Le filtre a été nommé d'après le mathématicien et informaticien américain d'origine hongroise Rudolf Kálmán. Le filtre de Kalman est utilisé dans une large gamme de domaines technologiques (radar, vision électronique, communication...).
Processeur de signal numériqueUn DSP (de l'anglais « Digital Signal Processor », qu'on pourrait traduire par « processeur de signal numérique » ou « traitement numérique de signal ») est un microprocesseur optimisé pour exécuter des applications de traitement numérique du signal (filtrage, extraction de signaux) le plus rapidement possible. Les DSP sont utilisés dans la plupart des applications du traitement numérique du signal en temps réel. On les trouve dans les modems (modem RTC, modem ADSL), les téléphones mobiles, les appareils multimédia (lecteur MP3), les récepteurs GPS.