Fonction objectifvignette|comparaison de certains substituts de la fonction de perte Le terme fonction objectif ou fonction économique, est utilisé en optimisation mathématique et en recherche opérationnelle pour désigner une fonction qui sert de critère pour déterminer la meilleure solution à un problème d'optimisation. Elle associe une valeur à une instance d'un problème d'optimisation. Le but du problème d'optimisation est alors de minimiser ou de maximiser cette fonction jusqu'à l'optimum, par différents procédés comme l'algorithme du simplexe.
Optimisation multiobjectifL'optimisation multiobjectif (appelée aussi Programmation multi-objective ou optimisation multi-critère) est une branche de l'optimisation mathématique traitant spécifiquement des problèmes d'optimisation ayant plusieurs fonctions objectifs. Elle se distingue de l'optimisation multidisciplinaire par le fait que les objectifs à optimiser portent ici sur un seul problème. Les problèmes multiobjectifs ont un intérêt grandissant dans l'industrie où les responsables sont contraints de tenter d'optimiser des objectifs contradictoires.
Stratégie (théorie des jeux)En théorie des jeux, la stratégie d'un joueur est l’une des options qu’il choisit dans un contexte où le résultat dépend non seulement de ses propres actions, mais également de celles des autres . La stratégie d'un joueur déterminera l'action qu'il entreprendra à n'importe quel stade de la partie. Une stratégie est un algorithme complet pour jouer à un jeu permettant au joueur de déterminer ce qu’il doit faire dans toutes les situations possibles du jeu.
Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Scenario optimizationThe scenario approach or scenario optimization approach is a technique for obtaining solutions to robust optimization and chance-constrained optimization problems based on a sample of the constraints. It also relates to inductive reasoning in modeling and decision-making. The technique has existed for decades as a heuristic approach and has more recently been given a systematic theoretical foundation. In optimization, robustness features translate into constraints that are parameterized by the uncertain elements of the problem.
Technologies de l'éducationLes technologies de l'éducation (Edtech en anglais, pour Educational technology) désignent l'ensemble des nouvelles technologies permettant de faciliter l’enseignement et l'apprentissage. On parle alors de technologies pédagogiques qui permettent d'apprendre de nouveaux contenus sous une forme ludique, stimulante et innovante. Le terme Edtech, né de la contraction d'« éducation » et de « technologie », est apparu dans la littérature anglophone en 2010. Il est devenu populaire pour désigner les startups qui innovent au service de l'éducation.
Intervalle de confiancevignette|Chaque ligne montre 20 échantillons tirés selon la loi normale de moyenne μ. On y montre l'intervalle de confiance de niveau 50% pour la moyenne correspondante aux 20 échantillons, marquée par un losange. Si l'intervalle contient μ, il est bleu ; sinon il est rouge. En mathématiques, plus précisément en théorie des probabilités et en statistiques, un intervalle de confiance encadre une valeur réelle que l’on cherche à estimer à l’aide de mesures prises par un procédé aléatoire.
Optimisation convexevignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive). La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions.
Apprentissage hybridevignette|Illustration de l'apprentissage hybride qui consiste à combiner les séquences de formation en ligne L'apprentissage hybride ou mixte (en anglais « en ») est une formule pédagogique qui résulte d’une combinaison de séquences de formation en ligne (e-learning) et de formation en présentiel. Elle offre certains avantages comme un espace de travail plus collaboratif pour les apprenants. L’utilisation des technologies de l’information et de la communication donne l’opportunité à l’apprenant d’avoir, dans une certaine mesure, un contrôle sur le temps, le lieu, les moyens et la vitesse.