Algorithme de compression sans pertevignette|Comparaison de la compression d'image entre les formats JPG (à gauche) et PNG (à droite). PNG utilise une compression sans perte. On appelle algorithme de compression sans perte toute procédure de codage ayant pour objectif de représenter une certaine quantité d'information en utilisant ou en occupant un espace plus petit, permettant ainsi une reconstruction exacte des données d'origine. C'est-à-dire que la compression sans perte englobe les techniques permettant de générer un duplicata exact du flux de données d'entrée après un cycle de compression/expansion.
Lossy compressionIn information technology, lossy compression or irreversible compression is the class of data compression methods that uses inexact approximations and partial data discarding to represent the content. These techniques are used to reduce data size for storing, handling, and transmitting content. The different versions of the photo of the cat on this page show how higher degrees of approximation create coarser images as more details are removed. This is opposed to lossless data compression (reversible data compression) which does not degrade the data.
Error analysis (mathematics)In mathematics, error analysis is the study of kind and quantity of error, or uncertainty, that may be present in the solution to a problem. This issue is particularly prominent in applied areas such as numerical analysis and statistics. In numerical simulation or modeling of real systems, error analysis is concerned with the changes in the output of the model as the parameters to the model vary about a mean. For instance, in a system modeled as a function of two variables Error analysis deals with the propagation of the numerical errors in and (around mean values and ) to error in (around a mean ).
Numerical cognitionNumerical cognition is a subdiscipline of cognitive science that studies the cognitive, developmental and neural bases of numbers and mathematics. As with many cognitive science endeavors, this is a highly interdisciplinary topic, and includes researchers in cognitive psychology, developmental psychology, neuroscience and cognitive linguistics. This discipline, although it may interact with questions in the philosophy of mathematics, is primarily concerned with empirical questions.
Expériences sur les inégalités de BellLes expériences sur les inégalités de Bell, parfois nommées expériences EPR sont conçues pour démontrer l'existence dans le monde réel de certaines conséquences théoriques du phénomène d'intrication en mécanique quantique, phénomène supposé ne pouvant pas se produire selon une image classique du monde caractérisée par la notion de principe de localité. En vertu du principe de localité, les corrélations entre les résultats des différentes mesures effectuées sur des systèmes physiquement séparés doivent satisfaire à certaines contraintes, appelées inégalités de Bell.
Transparency (data compression)In data compression and psychoacoustics, transparency is the result of lossy data compression accurate enough that the compressed result is perceptually indistinguishable from the uncompressed input, i.e. perceptually lossless. A transparency threshold is a given value at which transparency is reached. It is commonly used to describe compressed data bitrates. For example, the transparency threshold for MP3 to linear PCM audio is said to be between 175 and 245 kbit/s, at 44.
NumératieLa numératie est la capacité à utiliser, à appliquer, à interpréter, à communiquer, à créer et à critiquer des informations et des idées mathématiques de la vie réelle. C’est également la tendance d’un individu à réfléchir mathématiquement dans différentes situations professionnelles, personnelles, sociales et culturelles. Sa visée pragmatique favorise l’indépendance et l’autonomie. La numératie prend forme dans les dimensions cognitive, affective et motivationnelle d’un individu.
Pavage de Penrosevignette|Un pavage de Penrose|alt= vignette|Roger Penrose, debout sur le pavage de Penrose du foyer de l'institut Mitchell, Texas A&M University|alt= Les pavages de Penrose sont, en géométrie, des pavages du plan découverts par le mathématicien et physicien britannique Roger Penrose dans les années 1970. En 1984, ils ont été utilisés comme un modèle intéressant de la structure des quasi-cristaux.
Pavage du planthumb|Pavage constitué de triangles équilatéraux et d'hexagones, dit pavage trihexagonal. thumb|Pavage hexagonal de tomettes provençales en terre cuite. Un pavage du plan est un ensemble de portions du plan, par exemple des polygones, dont l'union est le plan tout entier, sans recouvrement. Plus précisément, c'est une partition du plan euclidien par des éléments d'un ensemble fini, appelés « carreaux » (plus précisément, ce sont des compacts d’intérieur non vide).
Expérience d'AspectEn mécanique quantique, l'expérience d'Aspect est la première expérience montrant la violation des inégalités de Bell, établissant un résultat irréfutable en vue de la validation du phénomène d'intrication quantique et des hypothèses de non-localité. Elle apporte ainsi une réponse expérimentale au paradoxe EPR proposé une cinquantaine d'années plus tôt par Albert Einstein, Boris Podolsky et Nathan Rosen. Cette expérience a été réalisée par le physicien français Alain Aspect à l'Institut d'Optique à Orsay entre 1980 et 1982.