Théorème du codage de canalEn théorie de l'information, le théorème du codage de canal aussi appelé deuxième théorème de Shannon montre qu'il est possible de transmettre des données numériques sur un canal bruité avec un taux d'erreur arbitrairement faible si le débit est inférieur à une certaine limite propre au canal. Ce résultat publié par Claude Shannon en 1948 est fondé sur des travaux antérieurs de Harry Nyquist et Ralph Hartley. La première preuve rigoureuse fut établie par Amiel Feinstein en 1954.
Canal binaire symétriqueAlice veut transmettre un message à Bob. Un canal binaire symétrique est un canal discret où Alice transmet une suite d’éléments de l'ensemble et où la probabilité d'erreur dans la transmission d'un symbole est de , pour 0 et pour 1 (d'où la symétrie). Ce canal est sans mémoire, c'est-à-dire qu'aucune archive des messages n'est conservée. En communication, un problème classique est d'envoyer de l'information d'une source à une destination via un canal de communication, en présence de bruit.
Capacité d'un canalLa capacité d'un canal, en génie électrique, en informatique et en théorie de l'information, est la limite supérieure étroite du débit auquel l'information peut être transmise de manière fiable sur un canal de communication. Suivant les termes du théorème de codage du canal bruyant, la capacité d'un canal donné est le débit d'information le plus élevé (en unités d'information par unité de temps) qui peut être atteint avec une probabilité d'erreur arbitrairement faible. La théorie de l'information, développée par Claude E.
ErgodicityIn mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process.
Codes de parité à faible densitéDans la théorie de l'information, un contrôle de parité de faible densité LDPC est un code linéaire correcteur d'erreur, permettant la transmission d'information sur un canal de transmission bruité. LDPC est construit en utilisant un graphe biparti clairsemé. Les codes LDPC ont une capacité approchant la limite théorique. À l'aide de techniques itératives de propagation d'information sur la donnée transmise et à décoder, les codes LDPC peuvent être décodés en un temps proportionnel à leur longueur de bloc.
Théorie des systèmes dynamiquesLa théorie des systèmes dynamiques désigne couramment la branche des mathématiques qui s'efforce d'étudier les propriétés d'un système dynamique. Cette recherche active se développe à la frontière de la topologie, de l'analyse, de la géométrie, de la théorie de la mesure et des probabilités. La nature de cette étude est conditionnée par le système dynamique étudié et elle dépend des outils utilisés (analytiques, géométriques ou probabilistes).
Théorie du chaosLa théorie du chaos est une théorie scientifique rattachée aux mathématiques et à la physique qui étudie le comportement des systèmes dynamiques sensibles aux conditions initiales, un phénomène généralement illustré par l'effet papillon. Dans de nombreux systèmes dynamiques, des modifications infimes des conditions initiales entraînent des évolutions rapidement divergentes, rendant toute prédiction impossible à long terme.
SystèmeUn système est un ensemble d' interagissant entre eux selon certains principes ou règles. Par exemple une molécule, le système solaire, une ruche, une société humaine, un parti, une armée etc. Un système est déterminé par : sa frontière, c'est-à-dire le critère d'appartenance au système (déterminant si une entité appartient au système ou fait au contraire partie de son environnement) ; ses interactions avec son environnement ; ses fonctions (qui définissent le comportement des entités faisant partie du système, leur organisation et leurs interactions) ; Certains systèmes peuvent également avoir une mission (ses objectifs et sa raison d'être) ou des ressources, qui peuvent être de natures différentes (humaine, naturelle, matérielle, immatérielle.
Pearson correlation coefficientIn statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations.
Distance correlationIn statistics and in probability theory, distance correlation or distance covariance is a measure of dependence between two paired random vectors of arbitrary, not necessarily equal, dimension. The population distance correlation coefficient is zero if and only if the random vectors are independent. Thus, distance correlation measures both linear and nonlinear association between two random variables or random vectors. This is in contrast to Pearson's correlation, which can only detect linear association between two random variables.