Fonction lemniscatiqueEn mathématiques, les fonctions lemniscatiques sont des fonctions elliptiques liées à la longueur d'arc d'une lemniscate de Bernoulli ; ces fonctions ont beaucoup d'analogies avec les fonctions trigonométriques. Elles ont été étudiées par Giulio Fagnano en 1718 ; leur analyse approfondie, et en particulier la détermination de leurs périodes, a été obtenue par Carl Friedrich Gauss en 1796. Ces fonctions ont un réseau de périodes carré, et sont étroitement reliées à la fonction elliptique de Weierstrass dont les invariants sont g2 = 1 et g3 = 0.
Fonction elliptique de JacobiEn mathématiques, les fonctions elliptiques de Jacobi sont des fonctions elliptiques d'une grande importance historique. Introduites par Carl Gustav Jakob Jacobi vers 1830, elles ont des applications directes, par exemple dans l'équation du pendule. Elles présentent aussi des analogies avec les fonctions trigonométriques, qui sont mises en valeur par le choix des notations sn et cn, qui rappellent sin et cos. Si les fonctions elliptiques thêta de Weierstrass semblent mieux adaptées aux considérations théoriques, les problèmes physiques pratiques font plus appel aux fonctions de Jacobi.
Correction d'un algorithmeUn algorithme est correct s'il fait ce qu'on attend de lui. Plus précisément, rappelons qu'un algorithme est décrit par une spécification des données sur lesquelles l'algorithme va démarrer son calcul et une spécification du résultat produit par l'algorithme. Démontrer la correction de l'algorithme consiste à démontrer que l'algorithme retourne, quand il calcule en partant des données, un objet qui est un des résultats escomptés et qui satisfait la spécification du résultat comme énoncé dans la description de l'algorithme.
Fonction (mathématiques)vignette|Diagramme de calcul pour la fonction En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique.
Fonction rationnelleEn mathématiques, une fonction rationnelle est une fonction définie par une fraction rationnelle, c'est-à-dire une dont le numérateur et le dénominateur sont des polynômes. En pratique, l'ensemble de définition est généralement (ensemble des réels) ou (ensemble des complexes). Si P et Q sont deux fonctions polynomiales et si Q n'est pas une fonction nulle, la fonction est définie pour tout x tel que Q(x) ≠ 0 par Une fonction qui n'est pas rationnelle est dite irrationnelle.
Fonction multivaluéeframe|right|Ce diagramme représente une multifonction : à chaque élément de X on fait correspondre une partie de Y ; ainsi à l'élément 3 de X correspond la partie de Y formée des deux points b et c. En mathématiques, une fonction multivaluée (aussi appelée correspondance, fonction multiforme, fonction multivoque ou simplement multifonction) est une relation binaire quelconque, improprement appelée fonction car non fonctionnelle : à chaque élément d'un ensemble elle associe, non pas au plus un élément mais possiblement zéro, un ou plusieurs éléments d'un second ensemble.
AnamorphismeL'anamorphisme (du Grec: = vers le haut; morphisme = forme) est un concept de la programmation fonctionnelle fondé sur la théorie des catégories. En programmation fonctionnelle, un anamorphisme est une généralisation des fonctions de type unfold permettant la création générique de liste au cadre des types de données arbitraires qui peuvent être décrites par des coalgèbres finales (ou « algèbres initiales »). Les anamorphismes, qui sont , sont la forme duale des catamorphismes récursifs, tout comme les unfolds sont une forme duale des folds.
Satisfiability modulo theoriesEn informatique et en logique mathématique, un problème de satisfiabilité modulo des théories (SMT) est un problème de décision pour des formules de logique du premier ordre avec égalité (sans quantificateurs), combinées à des théories dans lesquelles sont exprimées certains symboles de prédicat et/ou certaines fonctions. Des exemples de théories incluent la théorie des nombres réels, la théorie de l’arithmétique linéaire, des théories de diverses structures de données comme les listes, les tableaux ou les tableaux de bits, ainsi que des combinaisons de celles-ci.
Type systemIn computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type (for example, integer, floating point, string) to every "term" (a word, phrase, or other set of symbols). Usually the terms are various constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term.
Fold (higher-order function)In functional programming, fold (also termed reduce, accumulate, aggregate, compress, or inject) refers to a family of higher-order functions that analyze a recursive data structure and through use of a given combining operation, recombine the results of recursively processing its constituent parts, building up a return value. Typically, a fold is presented with a combining function, a top node of a data structure, and possibly some default values to be used under certain conditions.