Résumé
En mathématiques, les fonctions lemniscatiques sont des fonctions elliptiques liées à la longueur d'arc d'une lemniscate de Bernoulli ; ces fonctions ont beaucoup d'analogies avec les fonctions trigonométriques. Elles ont été étudiées par Giulio Fagnano en 1718 ; leur analyse approfondie, et en particulier la détermination de leurs périodes, a été obtenue par Carl Friedrich Gauss en 1796. Ces fonctions ont un réseau de périodes carré, et sont étroitement reliées à la fonction elliptique de Weierstrass dont les invariants sont g2 = 1 et g3 = 0. Dans le cas des fonctions lemniscatiques, ces périodes (ω1 et iω1) sont liées à la constante de Gauss G ; on a (où Γ est la fonction gamma). Le sinus lemniscatique (en latin sinus lemniscatus) et le cosinus lemniscatique (en latin cosinus lemniscatus) (notés sinlemn ou sl et coslemn ou cl) sont des analogues des fonctions sinus et cosinus usuelles, en remplaçant le cercle par une lemniscate (de Bernoulli). Elles sont définies (puis prolongées par symétrie et périodicité) par et (les fonctions trigonométriques usuelles peuvent être définies de même, en remplaçant t par t). Leurs prolongements analytiques au plan complexe sont des fonctions elliptiques doublement périodiques, de périodes et , où G est la constante de Gauss donnée par et i l'unité imaginaire ; la demi-période π G (analogue du nombre π en trigonométrie) est souvent notée . Les graphes des deux fonctions ont des symétries et des relations entre eux analogues à celles des graphes des fonctions trigonométriques (en remplaçant π par ) ; en particulier (symétrie par rapport à l'axe d'équation ). La lemniscate de Bernoulli, d'équation cartésienne , est formée des points dont le produit des distances aux deux points (1/, 0), (−1/, 0) (les foyers) est constant et vaut 1/2. La longueur r de l'arc le plus court allant de l'origine à un point situé à la distance s de cette origine est donnée par et par conséquent les fonctions lemniscatiques donnent la distance à l'origine en fonction de la longueur des arcs.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.