Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Graphe orienté acycliqueEn théorie des graphes, un graphe orienté acyclique (en anglais directed acyclic graph ou DAG), est un graphe orienté qui ne possède pas de circuit. Un tel graphe peut être vu comme une hiérarchie. Un graphe orienté acyclique est un graphe orienté qui ne possède pas de circuit. On peut toujours trouver un sous-graphe couvrant d’un graphe orienté acyclique qui soit un arbre (resp. une forêt). Dans un graphe orienté acyclique, la relation d'accessibilité R(u, v) définie par « il existe un chemin de u à v » est une relation d'ordre partielle.
Distance de WassersteinEn mathématiques et plus particulièrement en théorie des probabilités et en statistique, la 'distance de Wasserstein (ou distance de Kantorovitch, ou distance de Kantorovitch – Rubinstein') est une distance définie entre des mesures de probabilité sur un espace polonais. La plupart des publications en français adoptent l'orthographe allemande Wasserstein pour ce nom russe d'origine allemande.
Graphe conceptuelUn graphe conceptuel est un formalisme de représentation de connaissances et de raisonnements. Ce formalisme a été introduit par en 1984. Depuis cette date, ce formalisme a été développé suivant trois directions principales : interface graphique de la logique du premier ordre, système diagrammatique pour la logique du premier ordre, formalisme de représentation de connaissances et de raisonnement basé sur les graphes. Dans cette approche les graphes conceptuels servent d'interface graphique pour la logique du premier ordre (calcul des prédicats).