Réseaux antagonistes génératifsEn intelligence artificielle, les réseaux antagonistes génératifs (RAG) parfois aussi appelés réseaux adverses génératifs (en anglais generative adversarial networks ou GANs) sont une classe d'algorithmes d'apprentissage non supervisé. Ces algorithmes ont été introduits par . Ils permettent de générer des images avec un fort degré de réalisme. Un GAN est un modèle génératif où deux réseaux sont placés en compétition dans un scénario de théorie des jeux. Le premier réseau est le générateur, il génère un échantillon (ex.
Automated machine learningAutomated machine learning (AutoML) is the process of automating the tasks of applying machine learning to real-world problems. AutoML potentially includes every stage from beginning with a raw dataset to building a machine learning model ready for deployment. AutoML was proposed as an artificial intelligence-based solution to the growing challenge of applying machine learning. The high degree of automation in AutoML aims to allow non-experts to make use of machine learning models and techniques without requiring them to become experts in machine learning.
Structure de donnéesEn informatique, une structure de données est une manière d'organiser les données pour les traiter plus facilement. Une structure de données est une mise en œuvre concrète d'un type abstrait. Pour prendre un exemple de la vie quotidienne, on peut présenter des numéros de téléphone par département, par nom, par profession (comme les Pages jaunes), par numéro téléphonique (comme les annuaires destinés au télémarketing), par rue et/ou une combinaison quelconque de ces classements.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Graphe complémentaireframe|right|Le graphe de Petersen, à gauche et son complémentaire, à droite. En théorie des graphes, le graphe complémentaire ou graphe inversé d'un graphe simple est un graphe simple ayant les mêmes sommets et tel que deux sommets distincts de soient adjacents si et seulement s'ils ne sont pas adjacents dans . Le graphe complémentaire ne doit pas être confondu avec le complémentaire dans le sens de la théorie des ensembles. En effet, l'ensemble des sommets de G reste inchangé. Le complémentaire du complémentaire est le graphe original.
Graphe de CayleyEn mathématiques, un graphe de Cayley (du nom d'Arthur Cayley) est un graphe qui encode la structure d'un groupe. C'est un outil important pour l'étude de la combinatoire et de la géométrie des groupes. Étant donné un groupe et une partie génératrice de ce groupe, le graphe de Cayley Cay(G,S) est construit comme suit : À chaque élément de , on associe un sommet . À chaque élément de , on associe une couleur . Pour tout et , on trace une arête orientée de couleur du sommet vers le sommet .
Dérivation automatiqueEn mathématique et en calcul formel, la dérivation automatique (DA), également appelé dérivation algorithmique, dérivation formelle, ou auto-dérivation est un ensemble de techniques d'évaluation de la dérivée d'une fonction par un programme informatique. La dérivation automatique exploite le fait que chaque programme informatique, aussi compliqué soit-il, exécute une séquence d'opérations arithmétiques élémentaires (addition, soustraction, multiplication, division, etc.) et des fonctions élémentaires (exp, log,sin, cos, etc.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
PiscineUne piscine est un bassin artificiel, étanche, rempli d'eau et dont les dimensions permettent à un être humain de s'y plonger au moins partiellement. Une piscine se différencie d'une cuve ou d'une baignoire par ses équipements de filtration (pompe, filtre...). Il existe différents types de piscine dont les caractéristiques varient en fonction de leurs destinations (piscine privée, piscine privée à usage collectif, piscine publique) et de leur usage (piscine familiale, piscine de loisir, piscine thérapeutique, piscine d'entraînement sportif, piscine de plongée, aussi appelée « fosse à plongée ».
Théorie du transportEn mathématiques et en économie, la théorie du transport est le nom donné à l'étude du transfert optimal de matière et à l'allocation optimale de ressources. Le problème a été formalisé par le mathématicien français Gaspard Monge en 1781. D'importants développements ont été réalisés dans ce domaine pendant la Seconde Guerre mondiale par le mathématicien et économiste russe Léonid Kantorovitch. Par conséquent, le problème dans sa forme actuelle est parfois baptisé problème (du transport) de Monge-Kantorovitch.