Automated machine learningAutomated machine learning (AutoML) is the process of automating the tasks of applying machine learning to real-world problems. AutoML potentially includes every stage from beginning with a raw dataset to building a machine learning model ready for deployment. AutoML was proposed as an artificial intelligence-based solution to the growing challenge of applying machine learning. The high degree of automation in AutoML aims to allow non-experts to make use of machine learning models and techniques without requiring them to become experts in machine learning.
Sélection de caractéristiqueLa sélection de caractéristique (ou sélection d'attribut ou de variable) est un processus utilisé en apprentissage automatique et en traitement de données. Il consiste, étant donné des données dans un espace de grande dimension, à trouver un sous-sensemble de variables pertinentes. C'est-à-dire que l'on cherche à minimiser la perte d'information venant de la suppression de toutes les autres variables. C'est une méthode de réduction de la dimensionnalité. Extraction de caractéristique Catégorie:Apprentissage
Ingénierie des caractéristiquesL'ingénierie des caractéristiques (en anglais feature engineering) a un rôle important, notamment dans l’analyse des données. Sans données, les algorithmes d’exploitation et d’apprentissage automatique de données ne seront pas en mesure de fonctionner. En effet, il s’avère qu’en réalité, on ne pourrait réaliser que peu de choses si nous ne disposions que de très peu de caractéristiques afin de pouvoir représenter les données, ou les banques de données, sous-jacentes.
Produit scalaireEn mathématiques, et plus précisément en algèbre et en géométrie vectorielle, le produit scalaire est une opération algébrique s'ajoutant aux lois s'appliquant aux vecteurs. C'est une forme bilinéaire, symétrique, définie positive. À deux vecteurs, elle associe un scalaire, c'est-à-dire un nombre tel que ceux qui définissent cet espace vectoriel — réel pour un espace vectoriel réel. Si et sont deux vecteurs d'un espace vectoriel E sur le corps R des nombres réels, alors le produit scalaire de u par v est un scalaire (c'est-à-dire un élément de R), noté ∙ , , , ou .
AffectUn affect est un état de l'esprit tel qu'une sensation, une émotion, un sentiment, une humeur (au sens technique d’état moral : déprime, optimisme, anxiété...). Tout état de ce type a un aspect bon ou mauvais (jugement) et ainsi nous influence ou nous motive. Il varie également en force, c'est-à-dire son incidence sur notre motivation à agir ou réagir, et donc sur la conation (effort, volonté). Ces états sont regroupés dans le domaine de l'affectivité, par opposition aux idées abstraites par exemple qui ne sont ressenties ni comme bonnes ni comme mauvaises.
Modèle cognitifUn modèle cognitif est une représentation simplifiée visant à modéliser des processus psychologiques ou intellectuels. Leur champ d'application est principalement la psychologie cognitive et l'intelligence artificielle à travers la notion d'agent. Les sciences cognitives se servent de manière récurrente de modèles cognitifs : devant la complexité des processus permettant d'expliquer les raisonnements et les comportements, il est en effet pratique de passer par des hypothèses simplificatrices sous forme de modèles.
Produit vectorielEn mathématiques, et plus précisément en géométrie, le produit vectoriel est une opération vectorielle effectuée dans les espaces euclidiens orientés de dimension 3. Le formalisme utilisé actuellement est apparu en 1881 dans un manuel d'analyse vectorielle écrit par Josiah Willard Gibbs pour ses étudiants en physique. Les travaux de Hermann Günther Grassmann et William Rowan Hamilton sont à l'origine du produit vectoriel défini par Gibbs.
Predictive modellingPredictive modelling uses statistics to predict outcomes. Most often the event one wants to predict is in the future, but predictive modelling can be applied to any type of unknown event, regardless of when it occurred. For example, predictive models are often used to detect crimes and identify suspects, after the crime has taken place. In many cases, the model is chosen on the basis of detection theory to try to guess the probability of an outcome given a set amount of input data, for example given an email determining how likely that it is spam.
Apprentissage ensemblisteIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Sciences cognitivesthumb|283x283px|Les six disciplines scientifiques constituant les sciences cognitives et leurs liens interdisciplinaires, par l'un des pères fondateurs du domaine, G. A. Miller. Les traits pleins symbolisent les disciplines entre lesquelles existaient déjà des liens scientifiques à la naissance des sciences cognitives ; en pointillés, les disciplines entre lesquelles des interfaces se sont développées depuis lors.