Résumé
En mathématiques, et plus précisément en géométrie, le produit vectoriel est une opération vectorielle effectuée dans les espaces euclidiens orientés de dimension 3. Le formalisme utilisé actuellement est apparu en 1881 dans un manuel d'analyse vectorielle écrit par Josiah Willard Gibbs pour ses étudiants en physique. Les travaux de Hermann Günther Grassmann et William Rowan Hamilton sont à l'origine du produit vectoriel défini par Gibbs. La mise en place de la notion de produit vectoriel prend son essor dans la deuxième moitié du , même si Lagrange utilise en 1773 des grandeurs assimilables aux composantes du produit vectoriel de deux vecteurs. Mais cette utilisation reste limitée à un usage ponctuel. En 1843, Hamilton invente les quaternions qui permettent d'introduire naturellement le produit vectoriel. Indépendamment et à la même période (1844), Grassmann définit dans Die lineale Ausdehnungslehre ein neuer Zweig der Mathematik un « produit géométrique » à partir de considérations géométriques ; mais il ne parvient pas à définir clairement un produit vectoriel. Puis Grassmann lit Hamilton et s'inspire de ses travaux pour publier en 1862 une deuxième version de son traité qui est nettement plus claire. De même, Hamilton lit les travaux de Grassmann, les commente et les apprécie. Plus tard Maxwell commence à utiliser la théorie des quaternions pour l'appliquer à la physique. Après Maxwell, Clifford modifie profondément le formalisme de ce qui devenait l'analyse vectorielle. Il s'intéresse aux travaux de Grassmann et Hamilton avec une nette préférence pour le premier. Dans son ouvrage en (1878), Clifford définit le produit vectoriel de deux vecteurs comme un vecteur orthogonal aux deux vecteurs et dont la grandeur est égale à l'aire du parallélogramme formé par les deux vecteurs. En 1881, Gibbs publia en s'inspirant des travaux déjà réalisés, notamment ceux de Clifford et Maxwell. Si les physiciens se sont empressés d'utiliser le formalisme de Gibbs, celui-ci ne fut accepté en mathématiques que bien plus tard, et après plusieurs modifications.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.