Finite strain theoryIn continuum mechanics, the finite strain theory—also called large strain theory, or large deformation theory—deals with deformations in which strains and/or rotations are large enough to invalidate assumptions inherent in infinitesimal strain theory. In this case, the undeformed and deformed configurations of the continuum are significantly different, requiring a clear distinction between them. This is commonly the case with elastomers, plastically-deforming materials and other fluids and biological soft tissue.
Déformation d'un matériauLa déformation des matériaux est une science qui caractérise la manière dont réagit un matériau donné quand il est soumis à des sollicitations mécaniques. Cette notion est primordiale dans la conception (aptitude de la pièce à réaliser sa fonction), la fabrication (mise en forme de la pièce), et le dimensionnement mécanique (calcul de la marge de sécurité d'un dispositif pour éviter une rupture). La capacité d'une pièce à se déformer et à résister aux efforts dépend de trois paramètres : la forme de la pièce ; la nature du matériau ; des processus de fabrication : traitement thermique , traitement de surface, etc.
Deformation (engineering)In engineering, deformation refers to the change in size or shape of an object. Displacements are the absolute change in position of a point on the object. Deflection is the relative change in external displacements on an object. Strain is the relative internal change in shape of an infinitesimally small cube of material and can be expressed as a non-dimensional change in length or angle of distortion of the cube. Strains are related to the forces acting on the cube, which are known as stress, by a stress-strain curve.
Déformation plastiqueLa théorie de la plasticité traite des déformations irréversibles indépendantes du temps, elle est basée sur des mécanismes physiques intervenant dans les métaux et alliages mettant en jeu des mouvements de dislocations (un réarrangement de la position relative des atomes, ou plus généralement des éléments constitutifs du matériau) dans un réseau cristallin sans influence de phénomènes visqueux ni présence de décohésion endommageant la matière. Une des caractéristiques de la plasticité est qu’elle n’apparaît qu’une fois un seuil de charge atteint.
Strain-rate tensorIn continuum mechanics, the strain-rate tensor or rate-of-strain tensor is a physical quantity that describes the rate of change of the deformation of a material in the neighborhood of a certain point, at a certain moment of time. It can be defined as the derivative of the strain tensor with respect to time, or as the symmetric component of the Jacobian matrix (derivative with respect to position) of the flow velocity. In fluid mechanics it also can be described as the velocity gradient, a measure of how the velocity of a fluid changes between different points within the fluid.
Infinitesimal strain theoryIn continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller (indeed, infinitesimally smaller) than any relevant dimension of the body; so that its geometry and the constitutive properties of the material (such as density and stiffness) at each point of space can be assumed to be unchanged by the deformation.
Stress–strain curveIn engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined (see tensile testing). These curves reveal many of the properties of a material, such as the Young's modulus, the yield strength and the ultimate tensile strength. Generally speaking, curves representing the relationship between stress and strain in any form of deformation can be regarded as stress–strain curves.
FluageLe fluage est le phénomène physique qui provoque la déformation irréversible différée (c'est-à-dire non instantanée) d’un matériau soumis à une contrainte constante (notée ), même inférieure à la limite d'élasticité du matériau, pendant une durée suffisante. Le fluage ainsi que la relaxation de contrainte sont deux méthodes en quasi statique de caractérisation des matériaux visqueux (cas du béton). vignette|100px|Essai de fluage à chaud.
Strain energy density functionA strain energy density function or stored energy density function is a scalar-valued function that relates the strain energy density of a material to the deformation gradient. Equivalently, where is the (two-point) deformation gradient tensor, is the right Cauchy–Green deformation tensor, is the left Cauchy–Green deformation tensor, and is the rotation tensor from the polar decomposition of . For an anisotropic material, the strain energy density function depends implicitly on reference vectors or tensors (such as the initial orientation of fibers in a composite) that characterize internal material texture.
Jauge de déformationLe but des extensomètres (ou jauges extensométriques) à fils résistants ou jauges résistives de déformation (ou, abusivement, jauges de contrainte) est de traduire la déformation d'une pièce en variation de résistance électrique (plus les extensomètres s'étirent, plus leurs résistances augmentent). Elles consistent en des spires rapprochées et sont généralement fabriquées à partir d'une mince feuille métallique (quelques μm d'épaisseur) et d'un isolant électrique, que l'on traite comme un circuit imprimé (par lithographie et par attaque à l'acide).