Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Adversarial machine learningAdversarial machine learning is the study of the attacks on machine learning algorithms, and of the defenses against such attacks. A survey from May 2020 exposes the fact that practitioners report a dire need for better protecting machine learning systems in industrial applications. To understand, note that most machine learning techniques are mostly designed to work on specific problem sets, under the assumption that the training and test data are generated from the same statistical distribution (IID).
Programme informatiqueUn programme informatique est un ensemble d'instructions et d’opérations destinées à être exécutées par un ordinateur. Un programme source est un code écrit par un informaticien dans un langage de programmation. Il peut être compilé vers une forme binaire ou directement interprété. Un programme binaire décrit les instructions à exécuter par un microprocesseur sous forme numérique. Ces instructions définissent un langage machine.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Programmation informatiquevignette|Liste d'instructions sur le Commodore 64 La programmation, appelée aussi codage dans le domaine informatique, désigne l'ensemble des activités qui permettent l'écriture des programmes informatiques. C'est une étape importante du développement de logiciels (voire de matériel). L'écriture d'un programme se fait dans un langage de programmation. Un logiciel est un ensemble de programmes (qui peuvent être écrits dans des langages de programmation différents) destiné à la réalisation de certaines tâches par un (ou plusieurs) utilisateurs du logiciel.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Ordinateur à programme enregistréUn ordinateur à programme enregistré (ou calculateur à programme enregistré; en anglais stored-program computer) est un ordinateur qui enregistre les instructions des programmes qu'il exécute dans sa mémoire vive. La définition précédente est souvent étendue pour exiger que le traitement des instructions et des données en mémoire doive être interchangeable et uniforme.
Processeur graphiqueUn processeur graphique, ou GPU (de l'anglais Graphics Processing Unit), également appelé coprocesseur graphique sur certains systèmes, est une unité de calcul assurant les fonctions de calcul d'image. Il peut être présent sous forme de circuit intégré (ou puce) indépendant, soit sur une carte graphique ou sur la carte mère, ou encore intégré au même circuit intégré que le microprocesseur général (on parle d'un SoC lorsqu'il comporte toutes les puces spécialisées).
General-purpose processing on graphics processing unitsGPGPU est l'abréviation de general-purpose computing on graphics processing units, c'est-à-dire calcul générique sur processeur graphique. L'objectif de tels calculs est de bénéficier de la capacité de traitement parallèle des processeurs graphiques. Avant l'arrivée des GPGPU, le CPU, processeur central de l'ordinateur, traitait la plupart des opérations lourdes en calcul comme les simulations physiques, le rendu hors-ligne pour les films, les calculs de risques pour les institutions financières, la prévision météorologique, l'encodage de fichier vidéo et son Intel avec ses 80 % de parts de marché sur les CPU dominait donc très largement tous les besoins en calcul et pouvait en extraire de substantielles marges.