Graph rewritingIn computer science, graph transformation, or graph rewriting, concerns the technique of creating a new graph out of an original graph algorithmically. It has numerous applications, ranging from software engineering (software construction and also software verification) to layout algorithms and picture generation. Graph transformations can be used as a computation abstraction. The basic idea is that if the state of a computation can be represented as a graph, further steps in that computation can then be represented as transformation rules on that graph.
Filtre de TchebychevLes filtres de Tchebychev sont un type de filtre caractérisé par l'acceptation d'une ondulation, ou bien en bande passante ou bien en bande atténuée. Dans le premier cas, on parle de filtres de Tchebychev de type 1 ou directs, dans le second, de filtres de Tchebychev de type 2 ou inverses. Les filtres qui présentent une ondulation à la fois en bande passante et en bande atténuée sont appelés filtres elliptiques.
Graphe à distance héréditairevignette| Exemple d'un graphe à distance héréditaire. En théorie des graphes, un graphe à distance héréditaire (aussi appelé graphe complètement séparable) est un graphe dans lequel les distances entre sommets dans tout sous-graphe induit connexe sont les mêmes que celles du graphe tout entier ; autrement dit, tout sous-graphe induit hérite les distances du graphe entier. Les graphes à distance héréditaire ont été nommés et étudiés pour la première fois par Howorka en 1977, alors qu'une classe équivalente de graphes a déjà été considérée en 1970 par Olaru et Sachs qui ont montré que ce sont des graphes parfaits.
Graphe nulEn mathématiques, plus spécialement en théorie des graphes, un graphe nul désigne soit un graphe d'ordre zéro (i.e. sans sommets), soit un graphe avec sommets mais sans arêtes (on parle aussi dans ce dernier cas de graphe vide). Lorsqu'un graphe nul contient des sommets tous isolés, on le note où représente le nombre de sommets du graphe. La taille (i.e. le nombre d'arêtes ou d'arcs) d'un graphe nul est toujours zéro. L'ordre (i.e. le nombre de sommets) d'un graphe nul n'est pas nécessairement zéro.
Morlet waveletIn mathematics, the Morlet wavelet (or Gabor wavelet) is a wavelet composed of a complex exponential (carrier) multiplied by a Gaussian window (envelope). This wavelet is closely related to human perception, both hearing and vision. Wavelet#History In 1946, physicist Dennis Gabor, applying ideas from quantum physics, introduced the use of Gaussian-windowed sinusoids for time-frequency decomposition, which he referred to as atoms, and which provide the best trade-off between spatial and frequency resolution.
JPEG 2000JPEG 2000 ou ISO/CEI 15444-1, abrégé JP2 (quelquefois J2K), est une norme de compression d’ commune à l’ISO, la CEI et l’UIT-T, développée entre 1997 et 2000, et créée par le groupe de travail Joint Photographic Experts Group. Depuis mai 2015, il est officiellement reconnu par l'ISO / CEI et l'UIT-T sous le code ISO/IEC CD 15444. JPEG 2000 peut travailler avec ou sans perte, en utilisant des transformées en ondelettes (méthode d’analyse mathématique du signal), dont la décomposition est similaire à la transformée de Fourier à court terme.
Ondelette de HaarL'ondelette de Haar, ou fonction de Rademacher, est une ondelette créée par Alfréd Haar en 1909. On considère que c'est la première ondelette connue. Il s'agit d'une fonction constante par morceaux, ce qui en fait l'ondelette la plus simple à comprendre et à implémenter. L'ondelette de Haar peut être généralisée par ce qu'on appelle le système de Haar. La fonction-mère des ondelettes de Haar est une fonction constante par morceaux : La fonction d'échelle associée est alors une fonction porte : Le système de Haar est une suite de fonctions continues par morceaux, appartenant à pour .
Théorie des graphes extrémauxEn théorie des graphes, un graphe extrémal (anglais : extremal graph) par rapport à une propriété est un graphe tel que l'ajout de n'importe quelle arête amène le graphe à vérifier la propriété . L'étude des graphes extrémaux se décompose en deux sujets : la recherche de bornes inférieures sur le nombre d'arêtes nécessaires à assurer la propriété (voire sur d'autres paramètres comme le degré minimum) et la caractérisation des graphes extrémaux proprement dits. L'étude des graphes extrémaux est une branche de l'étude combinatoire des graphes.
Rook's graphIn graph theory, a rook's graph is an undirected graph that represents all legal moves of the rook chess piece on a chessboard. Each vertex of a rook's graph represents a square on a chessboard, and there is an edge between any two squares sharing a row (rank) or column (file), the squares that a rook can move between. These graphs can be constructed for chessboards of any rectangular shape.
Coloration de graphethumb|Une coloration du graphe de Petersen avec 3 couleurs. En théorie des graphes, la coloration de graphe consiste à attribuer une couleur à chacun de ses sommets de manière que deux sommets reliés par une arête soient de couleur différente. On cherche souvent à utiliser le nombre minimal de couleurs, appelé nombre chromatique. La coloration fractionnaire consiste à chercher non plus une mais plusieurs couleurs par sommet et en associant des coûts à chacune.