Abstract rewriting systemIn mathematical logic and theoretical computer science, an abstract rewriting system (also (abstract) reduction system or abstract rewrite system; abbreviated ARS) is a formalism that captures the quintessential notion and properties of rewriting systems. In its simplest form, an ARS is simply a set (of "objects") together with a binary relation, traditionally denoted with ; this definition can be further refined if we index (label) subsets of the binary relation.
Confluence (informatique)vignette|Le nom « confluence » est le même que celui utilisé en géographie : deux cours d'eau se rejoignent. En mathématiques, ou en informatique, la confluence d'une relation binaire est définie comme la propriété suivante : Pour tous éléments tels que et , il existe un élément tel que et . La confluence est équivalente à la propriété de Church-Rosser. La confluence locale est une propriété plus faible que la confluence, utile pour les systèmes de réécriture. Elle est définie par : Pour tous éléments tels que et , il existe un élément tel que et .
Réécriture (informatique)En informatique théorique, la réécriture (ou récriture) est un modèle de calcul dans lequel il s’agit de transformer des objets syntaxiques (mots, termes, lambda-termes, programmes, preuves, graphes, etc.) en appliquant des règles bien précises. La réécriture est utilisée en informatique, en algèbre, en logique mathématique et en linguistique. La réécriture est utilisée en pratique pour la gestion des courriers électroniques (dans le logiciel sendmail, les entêtes de courrier sont manipulées par des systèmes de réécriture) ou la génération et l'optimisation de code dans les compilateurs.
Algorithme d'EuclideEn mathématiques, l'algorithme d'Euclide est un algorithme qui calcule le plus grand commun diviseur (PGCD) de deux entiers, c'est-à-dire le plus grand entier qui divise les deux entiers, en laissant un reste nul. L'algorithme ne requiert pas de connaître la factorisation de ces deux nombres. vignette|Peinture censée représenter le mathématicien Euclide d'Alexandrie, par Justus of Ghent. Selon Donald Knuth, l'algorithme d'Euclide est l'un des plus anciens algorithmes.
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Algèbre de Boole (structure)vignette|Exemple d'algèbre de Boole : l'ensemble des parties de l'ensemble {x, y, z} illustré par son diagramme de Hasse. En mathématiques, une algèbre de Boole, ou parfois anneau de Boole, est une structure algébrique étudiée en particulier en logique mathématique. Une algèbre de Boole peut être définie soit comme une structure ordonnée particulière, soit comme une structure algébrique particulière, soit comme un anneau (unitaire) dont tout élément égale son carré.
Algèbre de Boole (logique)Lalgèbre de Boole, ou calcul booléen, est la partie des mathématiques qui s'intéresse à une approche algébrique de la logique, vue en termes de variables, d'opérateurs et de fonctions sur les variables logiques, ce qui permet d'utiliser des techniques algébriques pour traiter les expressions à deux valeurs du calcul des propositions. Elle fut lancée en 1854 par le mathématicien britannique George Boole. L'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
DécidabilitéEn logique mathématique, le terme décidabilité recouvre deux concepts liés : la décidabilité logique et la décidabilité algorithmique. L’indécidabilité est la négation de la décidabilité. Dans les deux cas, il s'agit de formaliser l'idée qu'on ne peut pas toujours conclure lorsque l'on se pose une question, même si celle-ci est sous forme logique. Une proposition (on dit aussi énoncé) est dite décidable dans une théorie axiomatique si on peut la démontrer ou démontrer sa négation dans le cadre de cette théorie.
Complete Boolean algebraIn mathematics, a complete Boolean algebra is a Boolean algebra in which every subset has a supremum (least upper bound). Complete Boolean algebras are used to construct Boolean-valued models of set theory in the theory of forcing. Every Boolean algebra A has an essentially unique completion, which is a complete Boolean algebra containing A such that every element is the supremum of some subset of A. As a partially ordered set, this completion of A is the Dedekind–MacNeille completion.
Forme normale disjonctiveEn logique booléenne ou en calcul des propositions, une forme normale disjonctive ou FND (en anglais, disjunctive normal form ou DNF) est une normalisation d'une expression logique qui est une disjonction de clauses conjonctives. Elle est utilisée dans la démonstration automatique de théorèmes. Une expression logique est en FND si et seulement si elle est une disjonction d'une ou plusieurs conjonctions d'un ou plusieurs littéraux. Tout comme dans une forme normale conjonctive (FNC), les seuls opérateurs dans une FND sont le et logique, le ou logique et la négation.