Algorithmethumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.
Forme normale conjonctiveEn logique booléenne et en calcul des propositions, une formule en forme normale conjonctive ou FNC (en anglais, Conjunctive Normal Form, Clausal Normal Form ou CNF) est une conjonction de clauses, où une clause est une disjonction de littéraux. Les formules en FNC sont utilisées dans le cadre de la démonstration automatique de théorèmes ou encore dans la résolution du problème SAT (en particulier dans l'algorithme DPLL). Une expression logique est en FNC si et seulement si elle est une conjonction d'une ou plusieurs disjonction(s) d'un ou plusieurs littéraux.
Système de ThueEn informatique théorique et en logique mathématique, un système de semi-Thue ou sa version symétrique, un système de Thue, est un système de réécriture de chaînes de caractères ou mots, appelé ainsi d'après son inventeur, le mathématicien norvégien Axel Thue. Contrairement aux grammaires formelles, un tel système ne distingue pas entre symboles terminaux et non terminaux, et ne possède pas d'axiome. Un système de semi-Thue est donné par une relation binaire finie fixe entre mots sur un alphabet donné, dont les éléments sont appelés les règles de réécriture, et notées .
Normal form (abstract rewriting)In abstract rewriting, an object is in normal form if it cannot be rewritten any further, i.e. it is irreducible. Depending on the rewriting system, an object may rewrite to several normal forms or none at all. Many properties of rewriting systems relate to normal forms. Stated formally, if (A,→) is an abstract rewriting system, x∈A is in normal form if no y∈A exists such that x→y, i.e. x is an irreducible term. An object a is weakly normalizing if there exists at least one particular sequence of rewrites starting from a that eventually yields a normal form.
Variété algébriqueUne variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés.
Problème du mot pour les groupesEn mathématiques, plus précisément dans le domaine de la théorie combinatoire des groupes, le problème du mot pour un groupe de type fini G est le problème algorithmique de décider si deux mots en les générateurs du groupe représentent le même élément. Plus précisément, si X un ensemble fini de générateurs pour G, on considère le langage formel constitué des mots sur X et son ensemble d'inverses formels qui sont envoyés par l'application naturelle sur l'identité du groupe G.
Théorème de représentation de Stone pour les algèbres de BooleEn mathématiques, le théorème de représentation de Stone pour les algèbres de Boole établit une équivalence entre la catégorie des algèbres de Boole et celle des espaces de Stone (espaces compacts totalement discontinus). Cette correspondance a été établie par Marshall Stone en 1936. Soit A une algèbre de Boole. On lui associe l'ensemble S(A) des morphismes , appelé « l'espace de Stone associé à A ».
Théorème des restes chinoisEn mathématiques, le théorème des restes chinois est un résultat d'arithmétique modulaire traitant de résolution de systèmes de congruences. Ce résultat, initialement établi pour Z/nZ, se généralise en théorie des anneaux. Ce théorème est utilisé en théorie des nombres. vignette|Exemple de Sun Zi : il y a 23 objets. La forme originale du théorème apparait sous forme de problème dans le livre de Sun Zi, le , datant du . Il est repris par le mathématicien chinois Qin Jiushao dans son ouvrage le Shùshū Jiǔzhāng (« Traité mathématique en neuf chapitres ») publié en 1247.
Anneau de BooleUn anneau de Boole (ou Algèbre de Boole), est un anneau unitaire (E, +, •, 0, 1) dans lequel tout élément a vérifie la relation a•a = a. Il découle immédiatement de la définition qu'un anneau de Boole est commutatif et que chaque élément est son propre opposé (en calculant le carré de x + 1, puis celui de x + y). En un sens qui peut être rendu précis, les anneaux de Boole sont les algèbres de Boole présentées autrement.
Problème de décisionEn informatique théorique, un problème de décision est une question mathématique dont la réponse est soit « oui », soit « non ». Les logiciens s'y sont intéressés à cause de l'existence ou de la non-existence d'un algorithme répondant à la question posée. Les problèmes de décision interviennent dans deux domaines de la logique : la théorie de la calculabilité et la théorie de la complexité. Parmi les problèmes de décision citons par exemple le problème de l'arrêt, le problème de correspondance de Post ou le dernier théorème de Fermat.