Groupe algébriqueEn géométrie algébrique, la notion de groupe algébrique est un équivalent des groupes de Lie en géométrie différentielle ou complexe. Un groupe algébrique est une variété algébrique munie d'une loi de groupe compatible avec sa structure de variété algébrique. Un groupe algébrique sur un corps (commutatif) K est une variété algébrique sur munie : d'un morphisme de K-variétés algébriques (appelé aussi multiplication) .
Algèbre associativevignette|Relations entre certaines structures algébriques. En mathématiques, une algèbre associative (sur un anneau commutatif A) est une des structures algébriques utilisées en algèbre générale. C'est un anneau (ou simplement un pseudo-anneau) B muni d'une structure supplémentaire de module sur A et tel que la loi de multiplication de l'anneau B soit A-bilinéaire. C'est donc un cas particulier d'algèbre sur un anneau. Soit A un anneau commutatif. On dit que (B , + , . , × ) est une A-algèbre associative lorsque : (B , + , .
Fonction hypergéométrique confluentevignette|Fonction hypergéométrique confluente. La fonction hypergéométrique confluente (ou fonction de Kummer) est : où désigne le symbole de Pochhammer. Elle est solution de l'équation différentielle d'ordre deux, appelée équation de Kummer : Elle est aussi définie par : Les fonctions de Bessel, la fonction gamma incomplète, les fonctions génératrices des moments des distributions bêta et bêta prime, les fonctions cylindre parabolique ou encore les polynômes d'Hermite et les polynômes de Laguerre peuvent être représentés à l'aide de fonctions hypergéométriques confluentes (cf.
Lemme de Newmanvignette|Confluence. vignette|Confluence locale. En mathématiques et en informatique, plus précisément dans la théorie des relations binaires, le lemme de Newman dit qu'une relation binaire noethérienne est confluente si elle est localement confluente. Une démonstration relativement simple (induction sur une relation bien fondée) est due à Gérard Huet en 1980. La démonstration originale de Newman est plus compliquée, mais la méthode des diagrammes décroissants montre bien comment elle fonctionne.
Théorie axiomatiqueQuand on parle de théorie mathématique, on fait référence à une somme d'énoncés, de définitions, de méthodes de preuve, etc. La théorie de la calculabilité en est un exemple. Par théorie axiomatique, on fait référence à quelque chose de plus précis, des axiomes et leurs conséquences, les théorèmes, énoncés dans un langage précis. Dans la suite on dira le plus souvent théorie pour théorie axiomatique, ce qui est d'usage courant en logique mathématique.
Algèbre universelleL'algèbre universelle est la branche de l'algèbre qui a pour but de traiter de manière générale et simultanée les différentes structures algébriques : groupes, monoïdes, anneaux, espaces vectoriels, etc. Elle permet de définir de manière uniforme les morphismes, les sous-structures (sous-groupes, sous-monoïdes, sous-anneaux, sous-espaces vectoriels, etc.), les quotients, les produits et les objets libres pour ces structures.
Extension conservatriceEn logique mathématique, une théorie logique T2 est une extension conservatrice (ou conservative) d'une théorie T1 si le langage de T2 étend le langage de T1, si chaque théorème de T1 est un théorème de T2 et si tout théorème de T2 qui est dans le langage de T1 est déjà un théorème de T1. Une extension propre est une extension non conservative. Informellement, cela veut dire que la nouvelle théorie peut éventuellement être plus commode pour prouver des théorèmes, mais qu’elle ne prouve pas de théorème nouveau concernant l'ancienne théorie.
Récursivement énumérableEn théorie de la calculabilité, un ensemble d'entiers naturels est récursivement énumérable ou semi-décidable si : il existe un algorithme qui prend un entier naturel en entrée, et qui s'arrête exactement sur les entiers de ; ou, de manière équivalente : il existe un procédé algorithmique qui, au cours de son fonctionnement, énumère en sortie tous les entiers de et seulement ceux-ci (il est possible, et même nécessaire quand est infini, qu'il ne s'arrête pas).
Inner modelIn set theory, a branch of mathematical logic, an inner model for a theory T is a substructure of a model M of a set theory that is both a model for T and contains all the ordinals of M. Let be the language of set theory. Let S be a particular set theory, for example the ZFC axioms and let T (possibly the same as S) also be a theory in . If M is a model for S, and N is an -structure such that N is a substructure of M, i.e. the interpretation of in N is N is a model for T the domain of N is a transitive class of M N contains all ordinals of M then we say that N is an inner model of T (in M).
Generalized hypergeometric functionIn mathematics, a generalized hypergeometric series is a power series in which the ratio of successive coefficients indexed by n is a rational function of n. The series, if convergent, defines a generalized hypergeometric function, which may then be defined over a wider domain of the argument by analytic continuation. The generalized hypergeometric series is sometimes just called the hypergeometric series, though this term also sometimes just refers to the Gaussian hypergeometric series.