In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular singularity. The term confluent refers to the merging of singular points of families of differential equations; confluere is Latin for "to flow together". There are several common standard forms of confluent hypergeometric functions: Kummer's (confluent hypergeometric) function M(a, b, z), introduced by , is a solution to Kummer's differential equation. This is also known as the confluent hypergeometric function of the first kind. There is a different and unrelated Kummer's function bearing the same name. Tricomi's (confluent hypergeometric) function U(a, b, z) introduced by , sometimes denoted by Ψ(a; b; z), is another solution to Kummer's equation. This is also known as the confluent hypergeometric function of the second kind. Whittaker functions (for Edmund Taylor Whittaker) are solutions to Whittaker's equation. Coulomb wave functions are solutions to the Coulomb wave equation. The Kummer functions, Whittaker functions, and Coulomb wave functions are essentially the same, and differ from each other only by elementary functions and change of variables. Kummer's equation may be written as: with a regular singular point at z = 0 and an irregular singular point at z = ∞. It has two (usually) linearly independent solutions M(a, b, z) and U(a, b, z). Kummer's function of the first kind M is a generalized hypergeometric series introduced in , given by: where: is the rising factorial. Another common notation for this solution is Φ(a, b, z). Considered as a function of a, b, or z with the other two held constant, this defines an entire function of a or z, except when b = 0, −1, −2, ... As a function of b it is analytic except for poles at the non-positive integers. Some values of a and b yield solutions that can be expressed in terms of other known functions. See #Special cases.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
PHYS-216: Mathematical methods (for SPH)
Ce cours est un complément aux cours d'analyse et d'algèbre linéaire qui apporte des méthodes et des techniques mathématiques supplémentaires requises pour les cours de physique de 3e année, notamment
Séances de cours associées (14)
Équation de Bessel : deuxième solution de la série Frobenius
Explore l'équation de Bessel, dérivant des solutions et étudiant l'existence d'une deuxième solution de la série Frobenius.
Équation de Bessel: fonctions de Bessel du 1er type
Explore l'équation de Bessel et la dérivation des fonctions de Bessel du 1er type.
Équation de Bessel: Fonctions de Bessel du 2ème type
Explore l'équation de Bessel et ses solutions, en se concentrant sur les fonctions de Bessel du 2ème type et leurs propriétés.
Afficher plus
Publications associées (19)
Concepts associés (9)
Fonction gamma incomplète
En analyse mathématique, il existe plusieurs définitions de fonctions gamma incomplètes : pour un paramètre complexe a de partie réelle strictement positive, La dérivée de la fonction gamma incomplète Γ(a, x) par rapport à x est l'opposée de l'intégrande de sa définition intégrale : La dérivée par rapport au paramètre a est donnée par et la dérivée seconde par où la fonction T(m, a, x) est un cas particulier de la Ce cas particulier possède des propriétés internes de fermeture qui lui sont propres parce qu'
Fonction d'erreur
thumb|right|upright=1.4|Construction de la fonction d'erreur réelle. En mathématiques, la fonction d'erreur (aussi appelée fonction d'erreur de Gauss) est une fonction entière utilisée en analyse. Cette fonction se note erf et fait partie des fonctions spéciales. Elle est définie par : La fonction erf intervient régulièrement dans le domaine des probabilités et statistiques, ainsi que dans les problèmes de diffusion (de la chaleur ou de la matière).
Generalized hypergeometric function
In mathematics, a generalized hypergeometric series is a power series in which the ratio of successive coefficients indexed by n is a rational function of n. The series, if convergent, defines a generalized hypergeometric function, which may then be defined over a wider domain of the argument by analytic continuation. The generalized hypergeometric series is sometimes just called the hypergeometric series, though this term also sometimes just refers to the Gaussian hypergeometric series.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.