Attentionthumb|250px|Jeune fille se concentrant sur une tâche manuelle ; le regard, la respiration, la position du corps et en particulier des mains et le contrôle neuro musculaire sont mobilisés de concert pour assurer la précision du mouvement L'attention est la faculté de l'esprit de se consacrer à un objet : d'utiliser ses capacités à l'observation, l'étude, le jugement d'une chose quelle qu'elle soit, ou encore à la pratique d'une action.
Rythme cérébralUn rythme cérébral (appelé aussi activité neuro-électrique) désigne l'oscillation électromagnétique émise par le cerveau des êtres humains, mais également de tout être vivant. Le cortex frontal qui permet la cognition, la logique et le raisonnement est composé de neurones qui sont reliés entre eux par des synapses permettant la neurotransmission. Mesurables en volt et en hertz, ces ondes sont de très faible amplitude : de l'ordre du microvolt (chez l'être humain), elles ne suivent pas toujours une sinusoïde régulière.
Économie de l'attentionL’économie de l’attention est une branche des sciences économiques et de gestion qui traite de l'attention et de son contrôle comme d'une ressource rare en prenant appui sur les théories économiques afin de problématiser « le fonctionnement de marchés dans lesquels l’offre est abondante (et donc économiquement dévalorisée) et la ressource rare devient le temps et l’attention des consommateurs ». Dans ce contexte, le niveau d'attention dont bénéficie un objet est une source de valorisation : les produits de la surabondance de l'offre (contenus numériques, radiophoniques, télévisuels, etc.
Connectivity (graph theory)In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more isolated subgraphs. It is closely related to the theory of network flow problems. The connectivity of a graph is an important measure of its resilience as a network. In an undirected graph G, two vertices u and v are called connected if G contains a path from u to v.
Surcharge informationnelleLa surcharge informationnelle (en anglais information overload), surinformation ou infobésité (néologisme québécois), est l'excès d'informations, qu'une personne ne peut traiter ou supporter sans nuire à elle-même ou à son activité. Cette notion est également évoquée par le sociologue Edgar Morin sous l'appellation de « nuage informationnel ».
Graphe orientéthumb|Un graphe orienté .(Figure 1) Dans la théorie des graphes, un graphe orienté est un couple formé de un ensemble, appelé ensemble de nœuds et un ensemble appelé ensemble d'arêtes. Les arêtes sont alors nommées arcs, chaque arête étant un couple de noeuds, représenté par une flèche. Étant donné un arc , on dit que est l'origine (ou la source ou le départ ou le début) de et que est la cible (ou l'arrivée ou la fin) de . Le demi-degré extérieur (degré sortant) d'un nœud, noté , est le nombre d'arcs ayant ce nœud pour origine.
Fonction de base radialeUne fonction de base radiale est une fonction à valeurs réelles dont la valeur ne dépend que de la distance séparant son paramètre d'entrée à un autre point donné, communément appelé origine ou centre de la fonction. Toute fonction qui vérifie l'égalité est une fonction de base radiale. La norme utilisée correspond à la distance euclidienne, d'autres métriques peuvent cependant être utilisées.
Sciences cognitivesthumb|283x283px|Les six disciplines scientifiques constituant les sciences cognitives et leurs liens interdisciplinaires, par l'un des pères fondateurs du domaine, G. A. Miller. Les traits pleins symbolisent les disciplines entre lesquelles existaient déjà des liens scientifiques à la naissance des sciences cognitives ; en pointillés, les disciplines entre lesquelles des interfaces se sont développées depuis lors.
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Potentiel postsynaptique inhibiteurAn inhibitory postsynaptic potential (IPSP) is a kind of synaptic potential that makes a postsynaptic neuron less likely to generate an action potential. IPSPs were first investigated in motorneurons by David P. C. Lloyd, John Eccles and Rodolfo Llinás in the 1950s and 1960s. The opposite of an inhibitory postsynaptic potential is an excitatory postsynaptic potential (EPSP), which is a synaptic potential that makes a postsynaptic neuron more likely to generate an action potential.