Bruit thermiqueLe bruit thermique, également nommé bruit de résistance, bruit Johnson ou bruit de Johnson-Nyquist, est le bruit généré par l'agitation thermique des porteurs de charges, c'est-à-dire des électrons dans une résistance électrique en équilibre thermique. Ce phénomène a lieu indépendamment de toute tension appliquée. Le bruit thermique aux bornes d'une résistance est exprimée par la relation de Nyquist : où est la variance de la tension aux bornes de la résistance, est la constante de Boltzmann, qui vaut kB = 1,3806 × 10-23 J.
Bruit numériqueDans une , on appelle bruit numérique toute fluctuation parasite ou dégradation que subit l'image de l'instant de son acquisition jusqu'à son enregistrement. Le bruit numérique est une notion générale à tout type d'image numérique, et ce quel que soit le type du capteur à l'origine de son acquisition (appareil photo numérique, scanner, caméra thermique...etc). Les sources de bruit numérique sont multiples, certaines sont physiques liées à la qualité de l’éclairage, de la scène, la température du capteur, la stabilité du capteur de l'image durant l'acquisition, d'autres apparaissent durant la numérisation de l'information.
Fréquence (statistiques)vignette|Fréquence des traits de kanji En statistique, on appelle fréquence absolue l'effectif des observations d'une classe et fréquence relative ou simplement fréquence, le quotient de cet effectif par celui de la population. L'expression fréquence = valeur n'est jamais ambigüe. Si valeur est un nombre entier positif, il s'agit de la fréquence absolue, c'est-à-dire l'effectif de la classe. Si valeur est un nombre compris entre 0 et 1 ou un pourcentage, il s'agit de la fréquence relative.
Traitement numérique du signalLe traitement numérique du signal étudie les techniques de traitement (filtrage, compression, etc), d'analyse et d'interprétation des signaux numérisés. À la différence du traitement des signaux analogiques qui est réalisé par des dispositifs en électronique analogique, le traitement des signaux numériques est réalisé par des machines numériques (des ordinateurs ou des circuits dédiés). Ces machines numériques donnent accès à des algorithmes puissants, tel le calcul de la transformée de Fourier.
Excentricité orbitaleL’excentricité orbitale définit, en mécanique céleste et en mécanique spatiale, la forme des orbites des objets célestes. L'excentricité est couramment notée . Elle exprime l'écart de forme entre l'orbite et le cercle parfait dont l'excentricité est nulle. Lorsque , la trajectoire est fermée : l'orbite est périodique. Dans ce cas : lorsque , l'objet décrit un cercle et son orbite est dite circulaire ; lorsque , l'objet décrit une ellipse et son orbite est dite elliptique. Lorsque , la trajectoire est ouverte.
Pollution sonorethumb|Selon G. Dutilleux (2012), (ici, à titre d'exemple : vue de la circulation automobile urbaine à Bangkok, source majeure de nuisances sonores. thumb|L'échangeur de Daussoulx en Belgique ; autre exemple de source de nuisances sonores. La notion de pollution sonore regroupe généralement des nuisances sonores, et des pollutions induites par le son devenu dans certaines circonstances un « altéragène physique » pour l'être humain ou les écosystèmes.
Extrêmement haute fréquenceOn appelle extrêmement haute fréquence (EHF), extremely high frequency en anglais, la bande de radiofréquences qui s'étend de 30 à 300 GHz (longueur d'onde de 1 cm à 1 mm). Les EHF font partie des micro-ondes. Les matériels utilisés par le public dans ces fréquences ont des assignations spécifiques : Les antennes les plus utilisées sur cette bande : Antenne cornet Antenne losange de petite taille Antenne parabolique Réseaux d'antennes Antenne colinéaire Antenne ground plane Antenne fouet Antenne dipolaire ou dipôle Antenne dièdre La propagation est dans une zone de réception directe (quelques kilomètres) en partant de l’émetteur.
Time–frequency analysisIn signal processing, time–frequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously, using various time–frequency representations. Rather than viewing a 1-dimensional signal (a function, real or complex-valued, whose domain is the real line) and some transform (another function whose domain is the real line, obtained from the original via some transform), time–frequency analysis studies a two-dimensional signal – a function whose domain is the two-dimensional real plane, obtained from the signal via a time–frequency transform.
Signal électriquevignette|Signaux électriques sur l'écran d'un oscilloscope : signal rectanglaire (haut), signal harmonique ou sinusoïdal (bas). Un signal électrique est une grandeur électrique dont la variation dans le temps transporte une information, d'une source à une destination. La grandeur électrique que l'on considère pour la transmission et le traitement du signal peut être directement la différence de potentiel ou l'intensité d'un courant électrique ; ou bien une modulation de l'amplitude, de la fréquence ou de la phase d'une variation périodique de ces grandeurs, qu'on appelle porteuse ; dans les communications numériques par modem des règles complexes régissent la modulation afin d'occuper au mieux la largeur de bande allouée.
Quantification (signal)En traitement des signaux, la quantification est le procédé qui permet d'approcher un signal continu par les valeurs d'un ensemble discret d'assez petite taille. On parle aussi de quantification pour approcher un signal à valeurs dans un ensemble discret de grande taille par un ensemble plus restreint. L'application la plus courante de la quantification est la conversion analogique-numérique mais elle doit le développement de sa théorie aux problèmes de quantification pour la compression de signaux audio ou .