Taux d'intérêtLe taux d'intérêt d'un prêt ou d'un emprunt fixe la rémunération du capital prêté (exprimée en pourcentage du montant prêté) versée par l'emprunteur au prêteur. Le taux et les modalités de versement de cette rémunération sont fixés lors de la conclusion du contrat de prêt. Ce pourcentage tient compte de la durée du prêt, de la nature des risques encourus et des garanties offertes par le prêteur. Les taux d'intérêt sont utilisés dans de multiples domaines, des instruments financiers jusqu'aux produits d'épargne (compte d'épargne), en passant par les obligations.
Espace des lacetsEn mathématiques, l'espace des lacets d'un espace topologique pointé est l'ensemble des applications continues d'un segment dans cet espace, tel que l'image des deux extrémités du segment coïncide avec le point de base. Muni de la topologie compacte-ouverte, il s'agit d'un invariant homotopique. La concaténation et le renversement des lacets en font un h-groupe. L'espace des lacets d'un CW-complexe a le type d'homotopie d'un CW-complexe. L’espace des lacets est la cofibre de l’inclusion de l’espace des chemins pointés dans l’espace des chemins.
Path space fibrationIn algebraic topology, the path space fibration over a based space is a fibration of the form where is the path space of X; i.e., equipped with the compact-open topology. is the fiber of over the base point of X; thus it is the loop space of X. The space consists of all maps from I to X that may not preserve the base points; it is called the free path space of X and the fibration given by, say, , is called the free path space fibration. The path space fibration can be understood to be dual to the mapping cone.
Double-slit experimentIn modern physics, the double-slit experiment demonstrates that light and matter can satisfy the seemingly-incongruous classical definitions for both waves and particles, which is considered evidence for the fundamentally probabilistic nature of quantum mechanics. This type of experiment was first performed by Thomas Young in 1801, as a demonstration of the wave behavior of visible light. At that time it was thought that light consisted of either waves or particles.
Retard de groupe et retard de phaseEn traitement du signal, le temps de propagation de groupe ou retard de groupe est le retard infligé par un filtre, en secondes, de l'enveloppe en amplitude pour un signal à bande étroite. Le retard de phase est le retard (en secondes) de chaque composante fréquentielle calculé à partir de la réponse en phase du filtre. Le temps de propagation de groupe et le retard de phase dépendent en général de la fréquence, à l'exception d'un filtre à phase linéaire dont le retard de groupe et de phase sont constants et sont tous deux égaux.
Équation de Helmholtzvignette|Application de l'équation de Helmholtz. Léquation de Helmholtz (d'après le physicien Hermann von Helmholtz) est une équation aux dérivées partielles elliptique qui apparaît lorsque l'on cherche des solutions harmoniques de l'équation de propagation des ondes de D'Alembert, appelées « modes propres », sur un domaine : Pour que le problème mathématique soit bien posé, il faut spécifier une condition aux limites sur le bord du domaine, par exemple : une condition de Dirichlet, une condition de Neumann, un mélange des deux précédentes etc.
Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.