Interpolation numériqueEn analyse numérique (et dans son application algorithmique discrète pour le calcul numérique), l'interpolation est une opération mathématique permettant de remplacer une courbe ou une fonction par une autre courbe (ou fonction) plus simple, mais qui coïncide avec la première en un nombre fini de points (ou de valeurs) donnés au départ. Suivant le type d'interpolation, outre le fait de coïncider en un nombre fini de points ou de valeurs, il peut aussi être demandé à la courbe ou à la fonction construite de vérifier des propriétés supplémentaires.
IRM de diffusionL’IRM de diffusion est une technique basée sur l' (IRM). Elle permet de calculer en chaque point de l'image la distribution des directions de diffusion des molécules d'eau. Cette diffusion étant contrainte par les tissus environnants, cette modalité d'imagerie permet d'obtenir indirectement la position, l’orientation et l’anisotropie des structures fibreuses, notamment les faisceaux de matière blanche du cerveau. Le signal de résonance magnétique provient le plus souvent en IRM des noyaux d’hydrogène (protons).
Interpolation bicubiquevignette|Illustration de l'interpolation bicubique sur un ensemble de données aléatoires En mathématiques, l'interpolation bicubique est une extension de l'interpolation cubique pour interpoler un ensemble de points distribués sur une grille régulière bidimensionnelle. La surface interpolée est plus lisse que les surfaces correspondantes obtenues par interpolation bilinéaire ou par sélection du plus proche voisin. L'interpolation bicubique peut être accomplie en utilisant soit des polynômes de Lagrange, soit des splines cubiques, soit un algorithme de convolution cubique.
Spline cubique d'HermiteOn appelle spline cubique d'Hermite une spline de degré trois, nommée ainsi en hommage à Charles Hermite, permettant de construire un polynôme de degré minimal (le polynôme doit avoir au minimum quatre degrés de liberté et être donc de degré 3) interpolant une fonction en deux points avec ses tangentes. Chaque polynôme se trouve sous la forme suivante : thumb|Les quatre polynômes de base avec ce qui donne le polynôme suivant : Sous cette écriture, il est possible de voir que le polynôme p vérifie : La courbe est déterminée par la position des points et des tangentes.
Spline interpolationIn the mathematical field of numerical analysis, spline interpolation is a form of interpolation where the interpolant is a special type of piecewise polynomial called a spline. That is, instead of fitting a single, high-degree polynomial to all of the values at once, spline interpolation fits low-degree polynomials to small subsets of the values, for example, fitting nine cubic polynomials between each of the pairs of ten points, instead of fitting a single degree-ten polynomial to all of them.
Apprentissage non superviséDans le domaine informatique et de l'intelligence artificielle, l'apprentissage non supervisé désigne la situation d'apprentissage automatique où les données ne sont pas étiquetées (par exemple étiquetées comme « balle » ou « poisson »). Il s'agit donc de découvrir les structures sous-jacentes à ces données non étiquetées. Puisque les données ne sont pas étiquetées, il est impossible à l'algorithme de calculer de façon certaine un score de réussite.
Interpolation multivariéeEn analyse numérique, linterpolation multivariée ou linterpolation spatiale désigne l'interpolation numérique de fonctions de plus d'une variable. Le problème est similaire à celui de l'interpolation polynomiale sur un intervalle réel : on connait les valeurs d'une fonction à interpoler aux points et l'objectif consiste à évaluer la valeur de la fonction en des points . L'interpolation multivariée est notamment utilisée en géostatistique, où elle est utilisée pour reconstruire les valeurs d'une variable régionalisée sur un domaine à partir d'échantillons connus en un nombre limité de points.
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Auto-encodeurUn auto-encodeur (autoencodeur), ou auto-associateur est un réseau de neurones artificiels utilisé pour l'apprentissage non supervisé de caractéristiques discriminantes. L'objectif d'un auto-encodeur est d'apprendre une représentation (encodage) d'un ensemble de données, généralement dans le but de réduire la dimension de cet ensemble. Récemment, le concept d'auto-encodeur est devenu plus largement utilisé pour l'apprentissage de modèles génératifs.
ConnectomeLe connectome est un plan complet des connexions neuronales d'un cerveau. La production et l'étude des connectomes est la connectomique. À l'échelle microscopique, elle décrit la disposition des neurones et des synapses dans tout ou partie du système nerveux d'un organisme. À l'échelle "macroscopique", elle étudie la connectivité fonctionnelle et structurelle entre toutes les aires corticales et les structures sous-corticales.