Microscopie à super-résolutionLa microscopie à super-résolution est un ensemble de techniques permettant d'imager en microscopie optique des objets à une résolution à l’échelle nanométrique. Elle se démarque par le fait que la résolution obtenue n'est plus limitée par le phénomène de diffraction. Du fait de la diffraction de la lumière, la résolution d’un microscope optique conventionnel est en principe limitée, indépendamment du capteur utilisé et des aberrations ou imperfections des lentilles.
Optique en rayons XX-ray optics is the branch of optics that manipulates X-rays instead of visible light. It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray crystallography, X-ray fluorescence, small-angle X-ray scattering, X-ray microscopy, X-ray phase-contrast imaging, and X-ray astronomy. Since X-rays and visible light are both electromagnetic waves they propagate in space in the same way, but because of the much higher frequency and photon energy of X-rays they interact with matter very differently.
Aberration (optique)Une aberration est un défaut du système optique qui se répercute sur la qualité de l'image (flou, irisation ou déformation). Les aberrations sont définies par rapport à l'optique paraxiale et matérialisent le fait que certains rayons ne convergent pas vers l'image prédite par l'optique géométrique. Ainsi, la théorie des aberrations s'inscrit dans le cadre de l'optique géométrique et ne prend pas en compte les aspects ondulatoire ou corpusculaire de la lumière. Il est possible de classer les aberrations en deux groupes.
MicroscopieLa microscopie est un ensemble de techniques d' des objets de petites dimensions. Quelle que soit la technique employée, l'appareil utilisé pour rendre possible cette observation est appelé un . Des mots grecs anciens mikros et skopein signifiant respectivement « petit » et « examiner », la microscopie désigne étymologiquement l'observation d'objets invisibles à l'œil nu. On distingue principalement trois types de microscopies : la microscopie optique, la microscopie électronique et la microscopie à sonde locale.
Phase-contrast X-ray imagingPhase-contrast X-ray imaging or phase-sensitive X-ray imaging is a general term for different technical methods that use information concerning changes in the phase of an X-ray beam that passes through an object in order to create its images. Standard X-ray imaging techniques like radiography or computed tomography (CT) rely on a decrease of the X-ray beam's intensity (attenuation) when traversing the sample, which can be measured directly with the assistance of an X-ray detector.
Microscope confocalvignette|upright=2|Schéma de principe du microscope confocal par Marvin Minsky en 1957. vignette|upright=1.5|Principe de fonctionnement du microscope à fluorescence puis du microscope confocal. Un microscope confocal, appelé plus rarement microscope monofocal, est un microscope optique qui a la propriété de réaliser des images de très faible profondeur de champ (environ ) appelées « sections optiques ».
Télescope à rayons Xvignette|upright=1.5|Schéma du télescope spatial Chandra. Un télescope à est un télescope conçu pour l'astronomie des . Ces derniers doivent être mis en orbite hors de l'atmosphère terrestre, qui est opaque aux . Ils sont donc montés à bord de fusées-sondes ou des satellites artificiels. Au début des années 2000, les télescopes à peuvent observer avec une certaine précision des rayonnements allant jusqu'à une énergie d'environ 15 keV.
OptiqueL'optique est la branche de la physique qui traite de la lumière, de son comportement et de ses propriétés, du rayonnement électromagnétique à la vision en passant par les systèmes utilisant ou émettant de la lumière. Du fait de ses propriétés ondulatoires, le domaine de la lumière peut couvrir le lointain UV jusqu'au lointain IR en passant par les longueurs d'onde visibles. Ces propriétés recouvrent alors le domaine des ondes radio, micro-ondes, des rayons X et des radiations électromagnétiques.
Rayon Xvignette|upright|Une des premières radiographies, prise par Wilhelm Röntgen. alt=Rayon X des poumons humains|vignette|189x189px|Rayon X des poumons humains. Les rayons X sont une forme de rayonnement électromagnétique à haute fréquence constitué de photons dont l'énergie varie d'une centaine d'eV (électron-volt), à plusieurs MeV. Ce rayonnement a été découvert en 1895 par le physicien allemand Wilhelm Röntgen, qui a reçu pour cela le premier prix Nobel de physique ; il lui donna le nom habituel de l'inconnue en mathématiques, X.
Diffusion des ondesLa diffusion est le phénomène par lequel un rayonnement, comme la lumière, le son ou un faisceau de particules, est dévié dans diverses directions par une interaction avec d'autres objets. La diffusion peut être isotrope, c'est-à-dire répartie uniformément dans toutes les directions, ou anisotrope. En particulier, la fraction de l'onde incidente qui est retournée dans la direction d'où elle provient est appelée rétrodiffusion (backscatter en anglais). La diffusion peut s'effectuer avec ou sans variation de fréquence.