Entropic value at riskIn financial mathematics and stochastic optimization, the concept of risk measure is used to quantify the risk involved in a random outcome or risk position. Many risk measures have hitherto been proposed, each having certain characteristics. The entropic value at risk (EVaR) is a coherent risk measure introduced by Ahmadi-Javid, which is an upper bound for the value at risk (VaR) and the conditional value at risk (CVaR), obtained from the Chernoff inequality. The EVaR can also be represented by using the concept of relative entropy.
Nuisance parameterIn statistics, a nuisance parameter is any parameter which is unspecified but which must be accounted for in the hypothesis testing of the parameters which are of interest. The classic example of a nuisance parameter comes from the normal distribution, a member of the location–scale family. For at least one normal distribution, the variance(s), σ2 is often not specified or known, but one desires to hypothesis test on the mean(s).
Uncertainty quantificationUncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known. An example would be to predict the acceleration of a human body in a head-on crash with another car: even if the speed was exactly known, small differences in the manufacturing of individual cars, how tightly every bolt has been tightened, etc.
Loi d'extremum généraliséeEn probabilité et statistique, la loi d'extrémum généralisée est une famille de lois de probabilité continues qui servent à représenter des phénomènes de valeurs extrêmes (minimum ou maximum). Elle comprend la loi de Gumbel, la loi de Fréchet et la loi de Weibull, respectivement lois d'extrémum de type I, II et III. Le théorème de Fisher-Tippett-Gnedenko établit que la loi d'extremum généralisée est la distribution limite du maximum (adéquatement normalisé) d'une série de variables aléatoires indépendantes de même distribution (iid).
Test ZEn statistique, un test Z est un terme générique désignant tout test statistique dans lequel la statistique de test suit une loi normale sous l'hypothèse nulle. On considère un n-échantillon avec et un risque . Si l'on teste La statistique de test sous l'hypothèse nulle est : qui suit une loi normale Si , la réalisation de la statistique de test, est supérieur au quantile d'ordre de la loi alors on rejette l'hypothèse nulle. Si l'on teste Si est supérieur au quantile d'ordre de la loi alors on rejette l'hypothèse nulle.
Exponentielle de base aEn analyse réelle, l'exponentielle de base est la fonction notée exp qui, à tout réel x, associe le réel a. Elle n'a de sens que pour un réel a strictement positif. Elle étend à l'ensemble des réels la fonction, définie sur l'ensemble des entiers naturels, qui à l'entier n associe a. C'est donc la version continue d'une suite géométrique. Elle s'exprime à l'aide des fonctions usuelles exponentielle et logarithme népérien sous la forme Elle peut être définie comme la seule fonction continue sur R, prenant la valeur a en 1 et transformant une somme en produit.
Fonction d'ordre supérieurEn mathématiques et en informatique, les fonctions d'ordre supérieur sont des fonctions qui ont au moins une des propriétés suivantes : elles prennent une ou plusieurs fonctions en entrée ; elles renvoient une fonction. En mathématiques, on les appelle des opérateurs ou des fonctionnelles. L'opérateur de dérivation en calcul infinitésimal est un exemple classique, car elle associe une fonction (la dérivée) à une autre fonction (la fonction que l'on dérive). Dans le lambda-calcul non typé, toutes les fonctions sont d'ordre supérieur.
Asymptotic analysisIn mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n2. The function f(n) is said to be "asymptotically equivalent to n2, as n → ∞". This is often written symbolically as f (n) ~ n2, which is read as "f(n) is asymptotic to n2".
Test du multiplicateur de LagrangeLe test du multiplicateur de Lagrange (LM) ou test de score ou test de Rao est un principe général pour tester des hypothèses sur les paramètres dans un cadre de vraisemblance. L'hypothèse sous le test est exprimée comme une ou plusieurs contraintes sur les valeurs des paramètres. La statistique du test LM ne nécessite une maximisation que dans cet espace contraint des paramètres (en particulier si l'hypothèse à tester est de la forme alors ).
Risque financierUn risque financier est un risque de perdre de l'argent à la suite d'une opération financière (sur un actif financier) ou à une opération économique ayant une incidence financière (par exemple une vente à crédit ou en devises étrangères). Le risque de marché est le risque de perte qui peut résulter des fluctuations des prix des instruments financiers qui composent un portefeuille. Le risque de contrepartie est le risque que la partie avec laquelle un contrat a été conclu ne tienne pas ses engagements (livraison, paiement, remboursement, etc.