Polynomial greatest common divisorIn algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate polynomials over a field the polynomial GCD may be computed, like for the integer GCD, by the Euclidean algorithm using long division. The polynomial GCD is defined only up to the multiplication by an invertible constant.
Théorie de l'approximationEn mathématiques, la théorie de l'approximation concerne la façon dont les fonctions peuvent être approchées par de plus simples fonctions, en donnant une caractérisation quantitative des erreurs introduites par ces approximations. Le problème de l'approximation s'est posé très tôt en géométrie, pour les fonctions trigonométriques : ce sont des fonctions dont on connaît les propriétés (parité, dérivabilité, valeurs en des points particuliers) mais qui ne s'expriment pas à partir d'opérations réalisables à la main (les quatre opérations).
Approximation diophantiennevignette|Meilleurs approximations rationnelles pour les nombres irrationnels Π (vert), e (bleu), φ (rose), √3/2 (gris), 1/√2 (rouge) et 1/√3 (orange) tracées sous forme de pentes y/x avec des erreurs par rapport à leurs vraies valeurs (noirs) par CMG Lee. En théorie des nombres, l'approximation diophantienne, qui porte le nom de Diophante d'Alexandrie, traite de l'approximation des nombres réels par des nombres rationnels.
Automate à pileUn automate à pile est une machine abstraite utilisée en informatique théorique et, plus précisément, en théorie des automates. Un automate à pile est une généralisation des automates finis : il dispose en plus d'une mémoire infinie organisée en pile (last-in/first-out ou LIFO). Un automate à pile prend en entrée un mot et réalise une série de transitions. Il effectue pour chaque lettre du mot une transition, dont le choix dépend de la lettre, de l'état de l'automate et du sommet de la pile ; il peut aussi modifier le contenu de la pile.
Langage récursifEn mathématiques, en logique et en informatique, un langage récursif est un type de langage formel qui est aussi appelé récursif, décidable, ou Turing-decidable. Il y a plusieurs définitions équivalentes de langage récursif. On peut définir cette notion directement, comme une généralisation de celle d'ensemble récursif (des sous-ensembles d'entiers ou de uples d'entiers), ou passer par des codages dans les entiers, en utilisant la théorie de la calculabilité.
Captage et stockage du dioxyde de carboneLe captage et stockage du dioxyde de carbone (en anglais, carbon capture and storage ou CCS), également appelé captage et séquestration du dioxyde de carbone, consiste à capter du dans les effluents industriels puis à le stocker dans un réservoir géologique afin de limiter la contribution de ce gaz au réchauffement climatique et à l'acidification des milieux .
Problème de décisionEn informatique théorique, un problème de décision est une question mathématique dont la réponse est soit « oui », soit « non ». Les logiciens s'y sont intéressés à cause de l'existence ou de la non-existence d'un algorithme répondant à la question posée. Les problèmes de décision interviennent dans deux domaines de la logique : la théorie de la calculabilité et la théorie de la complexité. Parmi les problèmes de décision citons par exemple le problème de l'arrêt, le problème de correspondance de Post ou le dernier théorème de Fermat.
Langage rationnelEn théorie des langages, les langages rationnels ou langages réguliers ou encore langages reconnaissables peuvent être décrits de plusieurs façons équivalentes : ce sont les langages décrits par les expressions régulières ou rationnelles, d'où le nom de langages réguliers ; ce sont les langages obtenus, à partir des lettres et de l'ensemble vide, par les opérations rationnelles, à savoir l'union, le produit et l'étoile de Kleene, d'où le nom de langages rationnels ; ce sont les langages reconnus par des auto
DécidabilitéEn logique mathématique, le terme décidabilité recouvre deux concepts liés : la décidabilité logique et la décidabilité algorithmique. L’indécidabilité est la négation de la décidabilité. Dans les deux cas, il s'agit de formaliser l'idée qu'on ne peut pas toujours conclure lorsque l'on se pose une question, même si celle-ci est sous forme logique. Une proposition (on dit aussi énoncé) est dite décidable dans une théorie axiomatique si on peut la démontrer ou démontrer sa négation dans le cadre de cette théorie.
Factorisation des polynômesEn mathématiques, la factorisation d'un polynôme consiste à écrire celui-ci comme produit de polynômes. Les factorisations intéressantes sont celles permettant d'écrire le polynôme initial en produit de plusieurs polynômes non inversibles. Un polynôme non inversible pour lequel aucune factorisation de ce type n'existe s'appelle un polynôme irréductible. La décomposition d'un polynôme en produits de polynômes irréductibles existe, et a une propriété d'unicité (à un facteur inversible près), pour tout polynôme à coefficients réels ou complexes.