Codage neuronalLe codage neuronal désigne, en neurosciences, la relation hypothétique entre le stimulus et les réponses neuronales individuelles ou globales. C'est une théorie sur l'activité électrique du système nerveux, selon laquelle les informations, par exemple sensorielles, numériques ou analogiques, sont représentées dans le cerveau par des réseaux de neurones. Le codage neuronal est lié aux concepts du souvenir, de l'association et de la mémoire sensorielle.
Neurone formelthumb|Représentation d'un neurone formel (ou logique). Un neurone formel, parfois appelé neurone de McCulloch-Pitts, est une représentation mathématique et informatique d'un neurone biologique. Le neurone formel possède généralement plusieurs entrées et une sortie qui correspondent respectivement aux dendrites et au cône d'émergence du neurone biologique (point de départ de l'axone). Les actions excitatrices et inhibitrices des synapses sont représentées, la plupart du temps, par des coefficients numériques (les poids synaptiques) associés aux entrées.
Models of neural computationModels of neural computation are attempts to elucidate, in an abstract and mathematical fashion, the core principles that underlie information processing in biological nervous systems, or functional components thereof. This article aims to provide an overview of the most definitive models of neuro-biological computation as well as the tools commonly used to construct and analyze them.
Pointes-OndesLes pointes-ondes (spike-and-wave en anglais) sont un motif d'oscillation de l'électroencéphalogramme (EEG) qui apparaît en général pendant certaines manifestations d'épilepsie chez l'homme ou chez l'animal. Les pointes-ondes sont observées en particulier lors de crises généralisées, par exemple lors du petit mal épileptique (crises d'absence). Chez l'homme, les pointes-ondes se produisent généralement autour d'une fréquence de 3 Hz ou moins, et sont caractérisées par une remarquable synchronie bilatérale.
Produit matriciel de Hadamardvignette|Illustration du produit de Hadamard: il s'applique à deux matrices de mêmes dimensions et la matrice en resultant a les mêmes dimensions également. En mathématiques, le produit matriciel de Hadamard, nommé d'après le mathématicien français Jacques Hadamard et parfois désigné produit de Schur, est une opération binaire qui pour deux matrices de mêmes dimensions, associe une autre matrice, de même dimension, et où chaque coefficient est le produit terme à terme des deux matrices.
Transformeurvignette|Schéma représentant l'architecture générale d'un transformeur. Un transformeur (ou modèle auto-attentif) est un modèle d'apprentissage profond introduit en 2017, utilisé principalement dans le domaine du traitement automatique des langues (TAL). Dès 2020, les transformeurs commencent aussi à trouver une application en matière de vision par ordinateur par la création des vision transformers (ViT).
Machine de Turing universellevignette|upright=1.5|Une machine de Turing quelconque M réalise un calcul à partir d'une entrée écrite sur son ruban. Une machine de Turing universelle U simule le calcul de M sur l'entrée de M à partir d'une description de M et de l'entrée de M écrits sur le ruban de U. En informatique, plus précisément en informatique théorique, une machine de Turing universelle est une machine de Turing qui peut simuler n'importe quelle machine de Turing sur n'importe quelle entrée.
Neuronethumb|537x537px|Schéma complet d’un neurone. Un neurone, ou une cellule nerveuse, est une cellule excitable constituant l'unité fonctionnelle de la base du système nerveux. Les neurones assurent la transmission d'un signal bioélectrique appelé influx nerveux. Ils ont deux propriétés physiologiques : l'excitabilité, c'est-à-dire la capacité de répondre aux stimulations et de convertir celles-ci en impulsions nerveuses, et la conductivité, c'est-à-dire la capacité de transmettre les impulsions.
Matrice diagonalisableEn mathématiques, une matrice diagonalisable est une matrice carrée semblable à une matrice diagonale. Cette propriété est équivalente à l'existence d'une base de vecteurs propres, ce qui permet de définir de manière analogue un endomorphisme diagonalisable d'un espace vectoriel. Le fait qu'une matrice soit diagonalisable dépend du corps dans lequel sont cherchées les valeurs propres, ce que confirme la caractérisation par le fait que le polynôme minimal soit scindé à racines simples.
Matrice diagonaleEn algèbre linéaire, une matrice diagonale est une matrice carrée dont les coefficients en dehors de la diagonale principale sont nuls. Les coefficients de la diagonale peuvent être ou ne pas être nuls. Une matrice diagonale est une matrice qui correspond à la représentation d'un endomorphisme diagonalisable dans une base de vecteurs propres. La matrice d'un endomorphisme diagonalisable est semblable à une matrice diagonale. Toute matrice diagonale est symétrique, normale et triangulaire.