Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Recent theoretical advances, based on a combination of concepts from Thouless' topological theory of adiabatic charge transport and a newly introduced gauge-invariance principle for transport coefficients, have permitted to connect (and reconcile) Faraday's picture of ionic transport-whereby each atom carries a well-defined integer charge-with a rigorous quantum description of the electronic charge-density distribution, which hardly suggests its partition into well defined atomic contributions. In this paper, these progresses are reviewed; in particular, it is shown how, by relaxing some general topological conditions, charge may be transported in ionic conductors without any net ionic displacements. After reporting numerical experiments which corroborate these findings, a new connection between the topological picture and the well-known Marcus-Hush theory of electron transfer is introduced in terms of the topology of adiabatic paths drawn by atomic trajectories. As a significant byproduct, the results reviewed here permit to classify different regimes of ionic transport according to the topological properties of the electronic structure of the conducting material. Finally, a few recent applications to energy materials and planetary sciences are reported.
Romain Christophe Rémy Fleury, Haoye Qin, Aleksi Antoine Bossart, Zhechen Zhang
Nicola Marzari, Davide Campi, Davide Grassano