Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
Couplage (théorie des graphes)En théorie des graphes, un couplage ou appariement (en anglais matching) d'un graphe est un ensemble d'arêtes de ce graphe qui n'ont pas de sommets en commun. Soit un graphe simple non orienté G = (S, A) (où S est l'ensemble des sommets et A l'ensemble des arêtes, qui sont certaines paires de sommets), un couplage M est un ensemble d'arêtes deux à deux non adjacentes. C'est-à-dire que M est une partie de l'ensemble A des arêtes telle que Un couplage maximum est un couplage contenant le plus grand nombre possible d'arêtes.
HypergrapheLes hypergraphes sont des objets mathématiques généralisant la notion de graphe. Ils ont été nommés ainsi par Claude Berge dans les années 1960. Les hypergraphes généralisent la notion de graphe non orienté dans le sens où les arêtes ne relient plus un ou deux sommets, mais un nombre quelconque de sommets (compris entre un et le nombre de sommets de l’hypergraphe). Certains théorèmes de la théorie des graphes se généralisent naturellement aux hypergraphes, par exemple le théorème de Ramsey.
Taux d'expansion (théorie des graphes)En mathématiques, et plus particulièrement en théorie des graphes, le taux d'expansion d'un graphe est une mesure de connectivité de ce graphe. Informellement, un grand taux d'expansion veut dire que n'importe quel sous-ensemble de sommets relativement petit possède beaucoup de connexions avec le reste du graphe. Cette mesure est surtout utilisée en raison des propriétés intéressantes des graphes ayant un fort taux d'expansion, parfois appelés graphes expanseurs. On les retrouve notamment en informatique théorique.
Maximum cardinality matchingMaximum cardinality matching is a fundamental problem in graph theory. We are given a graph G, and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset. As each edge will cover exactly two vertices, this problem is equivalent to the task of finding a matching that covers as many vertices as possible.
Line graphEn théorie des graphes, le line graph L(G) d'un graphe non orienté G, est un graphe qui représente la relation d'adjacence entre les arêtes de G. Le nom line graph vient d'un article de Harary et Norman publié en 1960. La même construction avait cependant déjà été utilisée par Whitney en 1932 et Krausz en 1943. Il est également appelé graphe adjoint. Un des premiers et des plus importants théorèmes sur les line graphs est énoncé par Hassler Whitney en 1932, qui prouve qu'en dehors d'un unique cas exceptionnel, la structure de G peut être entièrement retrouvée à partir de L(G) dans le cas des graphes connexes.
Théorie algébrique des graphesvignette|Le graphe de Petersen, qui possède 10 sommets et 15 arêtes. Hautement symétrique, il est en particulier distance-transitif. Son groupe d'automorphisme a 120 éléments et est en fait le groupe symétrique S. De diamètre 2, il possède 3 valeurs propres. En mathématiques, la théorie algébrique des graphes utilise des méthodes algébriques pour résoudre des problèmes liés aux graphes, par opposition à des approches géométriques, combinatoires ou algorithmiques.
Coloration de graphethumb|Une coloration du graphe de Petersen avec 3 couleurs. En théorie des graphes, la coloration de graphe consiste à attribuer une couleur à chacun de ses sommets de manière que deux sommets reliés par une arête soient de couleur différente. On cherche souvent à utiliser le nombre minimal de couleurs, appelé nombre chromatique. La coloration fractionnaire consiste à chercher non plus une mais plusieurs couleurs par sommet et en associant des coûts à chacune.
Théorie spectrale des graphesEn mathématiques, la théorie spectrale des graphes s'intéresse aux rapports entre les spectres des différentes matrices que l'on peut associer à un graphe et ses propriétés. C'est une branche de la théorie algébrique des graphes. On s'intéresse en général à la matrice d'adjacence et à la matrice laplacienne normalisée. Soit un graphe , où désigne l'ensemble des sommets et l'ensemble des arêtes. Le graphe possède sommets, notés et arêtes, notées .
Perfect matchingIn graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph G = (V, E), a perfect matching in G is a subset M of edge set E, such that every vertex in the vertex set V is adjacent to exactly one edge in M. A perfect matching is also called a 1-factor; see Graph factorization for an explanation of this term. In some literature, the term complete matching is used. Every perfect matching is a maximum-cardinality matching, but the opposite is not true.