Taux de retour énergétiqueLe taux de retour énergétique ou TRE est l'énergie utilisable acquise à partir d'un vecteur énergétique, rapportée à la quantité d'énergie dépensée pour obtenir cette énergie. Quand le TRE d'une ressource est inférieur ou égal à 1, cette source d'énergie devient un « puits d'énergie », et ne peut plus être considérée comme une source d'énergie, car la dépense est supérieure au résultat. Le TRE considère une source d'énergie unique.
Support de fonctionLe support d'une fonction ou d'une application est la partie de son ensemble de définition sur laquelle se concentre l'information utile de cette fonction. Pour une fonction numérique, c'est la partie du domaine où elle n'est pas nulle et pour un homéomorphisme ou une permutation, la partie du domaine où elle n'est pas invariante. Soit une fonction à valeurs complexes, définie sur un espace topologique . Définition : On appelle support de , noté , l'adhérence de l'ensemble des points en lesquels la fonction ne s'annule pas.
IsométrieEn géométrie, une isométrie est une transformation, qui conserve les longueurs et les mesures d’angles, délimités par deux demi‐droites ou bien deux demi‐plans. Autrement dit, une isométrie est une similitude particulière, qui reproduit n’importe quelle figure à l’échelle 1. Ce rapport 1 de longueurs s’appelle le rapport de la similitude. Comme une similitude, une isométrie dite directe conserve l’orientation des figures, tandis qu’une isométrie indirecte inverse leur orientation.
Smooth structureIn mathematics, a smooth structure on a manifold allows for an unambiguous notion of smooth function. In particular, a smooth structure allows one to perform mathematical analysis on the manifold. A smooth structure on a manifold is a collection of smoothly equivalent smooth atlases. Here, a smooth atlas for a topological manifold is an atlas for such that each transition function is a smooth map, and two smooth atlases for are smoothly equivalent provided their union is again a smooth atlas for This gives a natural equivalence relation on the set of smooth atlases.
DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).
SmoothnessIn mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called differentiability class. At the very minimum, a function could be considered smooth if it is differentiable everywhere (hence continuous). At the other end, it might also possess derivatives of all orders in its domain, in which case it is said to be infinitely differentiable and referred to as a C-infinity function (or function).
Équation des ondesL' ou est une équation aux dérivées partielles en physique qui régit la propagation d'une onde. C'est une équation vérifiée par de nombreux phénomènes ondulatoires de la vie courante comme le son ou la lumière. avec : l'opérateur laplacien ; l'onde vectorielle; une constante, vitesse de propagation de dans le milieu considéré ; L'utilisation du laplacien permet de s'affranchir du choix d'un système de coordonnées. avec : l'opérateur de dérivée partielle seconde en appliqué sur ; , les trois variables cartésiennes de l'espace, et celle du temps.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Solution (chimie)Une solution, en chimie, est un mélange homogène (constitué d'une seule phase) résultant de la dissolution d'un ou plusieurs soluté(s) (espèce chimique dissoute) dans un solvant. Les molécules (ou les ions) de soluté sont alors solvatées et dispersées dans le solvant. La solution liquide est l'exemple le plus connu. Une solution ayant l'eau comme solvant est appelée solution aqueuse. Il est possible de mettre en solution : un liquide dans un autre : limité par la miscibilité des deux liquides ; un solide dans un liquide : limité par la solubilité du solide dans le solvant, au-delà de laquelle le solide n'est plus dissous.
Objet compactvignette|Simulation d'un trou noir de 10 masses solaires vu d'une distance de 600 km En astronomie, le terme d'objet compact désigne en général un astre de haute compacité (et non pas nécessairement de haute densité) tel qu'un résidu de l'évolution stellaire. Une étoile à neutrons (incluant les pulsars), un trou noir, ou, si elles existent, les étoiles étranges sont des objets compacts. Selon les cas, une naine blanche est ou non considérée comme un objet compact.