First-magnitude starFirst-magnitude stars are the brightest stars in the night sky, with apparent magnitudes lower (i.e. brighter) than +1.50. Hipparchus, in the 1st century BC, introduced the magnitude scale. He allocated the first magnitude to the 20 brightest stars and the sixth magnitude to the faintest stars visible to the naked eye. In the 19th century, this ancient scale of apparent magnitude was logarithmically defined, so that a star of magnitude 1.00 is exactly 100 times as bright as one of 6.00.
Lentille gravitationnelleEn astrophysique, une lentille gravitationnelle, ou mirage gravitationnel, est produit par la présence d'un corps céleste très massif (tel, par exemple, un amas de galaxies) se situant entre un observateur et une source « lumineuse » lointaine. La lentille gravitationnelle, imprimant un fort champ gravitationnel autour d'elle, a comme effet de faire dévier les rayons lumineux qui passent près d'elle, déformant ainsi les images que reçoit un observateur placé sur la ligne de visée.
Magnitude photographiqueAvant l'apparition des photomètres qui mesurent précisément la luminosité des objets astronomiques, la magnitude apparente d'un objet était obtenue en prenant une photo de celui-ci avec un appareil photographique. Ces images, faites sur des pellicules photographiques ou des plaques orthochromatiques, étaient plus sensibles à l'extrémité bleue du spectre visuel que l'œil humain ou les photomètres modernes.
Magnitude limite visuelleEn astronomie, la magnitude limite visuelle désigne la magnitude limite, en lumière visible, que peut observer un instrument optique (œil, lunette, télescope, ...). L'œil humain permet de détecter un flux de 50 à 150 photons par seconde de lumière verte, couleur à laquelle les bâtonnets sont le plus sensibles. Ce flux lumineux correspond à une étoile de magnitude 8,5. L’œil humain pourrait donc voir des étoiles de cette magnitude dans le ciel.
Champ profond de HubbleLe Champ profond de Hubble, ou HDF pour l'anglais Hubble Deep Field, est une région de l'hémisphère nord de la sphère céleste située dans la constellation de la Grande Ourse, couvrant à peu près un 30 millionième de la surface du ciel, et qui contient environ galaxies de faible luminosité. Cette région a été photographiée par le télescope spatial Hubble en 1995. Elle a une taille de d'arc. Cela équivaut à celle d'un bouton de chemise placé à .
Histoire et chronologie de l'Universvignette|upright=1.5|Schéma simplifié des principales étapes de la formation de l'Univers.1- Big Bang.2- Ère de l'inflation.3- Découplage de l'interaction forte et faible et formation des particules.4- Formation des étoiles et galaxies. Lhistoire et la chronologie de l'Univers décrit l'évolution de l’Univers en s'appuyant sur le modèle standard de la cosmologie, fondé sur le modèle cosmologique du Big Bang et les recherches en cosmologie et en astronomie. Selon plusieurs estimations, l'âge de l'Univers serait d'environ d'années.
Analyse en composantes principalesL'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), ou, selon le domaine d'application, transformation de Karhunen–Loève (KLT) ou transformation de Hotelling, est une méthode de la famille de l'analyse des données et plus généralement de la statistique multivariée, qui consiste à transformer des variables liées entre elles (dites « corrélées » en statistique) en nouvelles variables décorrélées les unes des autres. Ces nouvelles variables sont nommées « composantes principales » ou axes principaux.
Spectroscopie astronomiqueLa spectroscopie est l'un des moyens principaux pour les astrophysiciens pour étudier l'Univers. En 1835, Auguste Comte disait dans son Cours de philosophie positive que parmi les choses qui resteraient à jamais hors de portée de la connaissance humaine figurait la composition chimique du Soleil. Il ne vécut pas assez longtemps pour voir en 1865 deux savants allemands, Robert Bunsen et Gustav Kirchhoff analyser pour la première fois la lumière du Soleil et permettre la détermination de la composition chimique de celui-ci.
Retard de groupe et retard de phaseEn traitement du signal, le temps de propagation de groupe ou retard de groupe est le retard infligé par un filtre, en secondes, de l'enveloppe en amplitude pour un signal à bande étroite. Le retard de phase est le retard (en secondes) de chaque composante fréquentielle calculé à partir de la réponse en phase du filtre. Le temps de propagation de groupe et le retard de phase dépendent en général de la fréquence, à l'exception d'un filtre à phase linéaire dont le retard de groupe et de phase sont constants et sont tous deux égaux.
Gain d'antenneLe gain d'antenne est le pouvoir d'amplification passif d'une antenne. C'est le rapport entre la puissance rayonnée dans le lobe principal et la puissance rayonnée par une antenne de référence, isotrope ou dipolaire. Le gain d'une antenne dépend principalement de sa surface équivalente, de sa directivité et de la fréquence. Le gain d'une antenne s'exprime normalement en dBi, en prenant pour référence une antenne isotrope, c’est-à-dire une antenne fictive qui rayonne uniformément dans toutes les directions.