Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Asymptotic computational complexityIn computational complexity theory, asymptotic computational complexity is the usage of asymptotic analysis for the estimation of computational complexity of algorithms and computational problems, commonly associated with the usage of the big O notation. With respect to computational resources, asymptotic time complexity and asymptotic space complexity are commonly estimated. Other asymptotically estimated behavior include circuit complexity and various measures of parallel computation, such as the number of (parallel) processors.
Complexité en espaceEn algorithmique, la complexité en espace est une mesure de l'espace utilisé par un algorithme, en fonction de propriétés de ses entrées. L'espace compte le nombre maximum de cases mémoire utilisées simultanément pendant un calcul. Par exemple le nombre de symboles qu'il faut conserver pour pouvoir continuer le calcul. Usuellement l'espace que l'on prend en compte lorsque l'on parle de l'espace nécessaire pour des entrées ayant des propriétés données est l'espace nécessaire le plus grand parmi ces entrées ; on parle de complexité en espace dans le pire cas.
Asymptotic analysisIn mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n2. The function f(n) is said to be "asymptotically equivalent to n2, as n → ∞". This is often written symbolically as f (n) ~ n2, which is read as "f(n) is asymptotic to n2".
Complexité dans le pire des casEn informatique, la complexité dans le pire des cas, ou complexité dans le cas le plus défavorable, mesure la complexité (par exemple en temps ou en espace) d'un algorithme dans le pire des cas d'exécution possibles. Elle est exprimée comme une fonction de la taille de l'entrée de l'algorithme. Implicitement, on cherche à construire des algorithmes s'exécutant en utilisant le moins de ressources possible (e.g. le plus vite possible), et il s'agit par conséquent d'une borne supérieure des ressources requises par l'algorithme.
Comparaison asymptotiqueEn mathématiques, plus précisément en analyse, la comparaison asymptotique est une méthode consistant à étudier la vitesse de croissance d'une fonction au voisinage d'un point ou à l'infini, en la comparant à celle d'une autre fonction considérée comme plus « simple ». Celle-ci est souvent choisie sur une échelle de référence, contenant en général au moins certaines fonctions dites élémentaires, en particulier les sommes et produits de polynômes, d'exponentielles et de logarithmes.
Modèle mixteUn modèle mixte est un modèle statistique qui comporte à la fois des effets fixes et des effets aléatoires. Ce type de modèle est utile dans une grande variété de domaines, tels que la physique, la biologie ou encore les sciences sociales. Les modèles mixtes sont particulièrement utiles dans les situations où des mesures répétées sont effectuées sur les mêmes variables (étude longitudinale). Ils sont souvent préférés à d'autres approches telle que rANOVA, dans la mesure où ils peuvent être utilisés dans le cas où le jeu de données présente des valeurs manquantes.
Spatial cognitionSpatial cognition is the acquisition, organization, utilization, and revision of knowledge about spatial environments. It is most about how animals including humans behave within space and the knowledge they built around it, rather than space itself. These capabilities enable individuals to manage basic and high-level cognitive tasks in everyday life. Numerous disciplines (such as cognitive psychology, neuroscience, artificial intelligence, geographic information science, cartography, etc.
Analyse de la complexité des algorithmesvignette|Représentation d'une recherche linéaire (en violet) face à une recherche binaire (en vert). La complexité algorithmique de la seconde est logarithmique alors que celle de la première est linéaire. L'analyse de la complexité d'un algorithme consiste en l'étude formelle de la quantité de ressources (par exemple de temps ou d'espace) nécessaire à l'exécution de cet algorithme. Celle-ci ne doit pas être confondue avec la théorie de la complexité, qui elle étudie la difficulté intrinsèque des problèmes, et ne se focalise pas sur un algorithme en particulier.
Équation différentielle ordinaireEn mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.