Arbre de décision (apprentissage)L’apprentissage par arbre de décision désigne une méthode basée sur l'utilisation d'un arbre de décision comme modèle prédictif. On l'utilise notamment en fouille de données et en apprentissage automatique. Dans ces structures d'arbre, les feuilles représentent les valeurs de la variable-cible et les embranchements correspondent à des combinaisons de variables d'entrée qui mènent à ces valeurs. En analyse de décision, un arbre de décision peut être utilisé pour représenter de manière explicite les décisions réalisées et les processus qui les amènent.
Sens de l'orientationthumb|upright=0.6|Assistance à l'orientation en intérieur. Le sens de l'orientation est l'aptitude d'un humain ou d'un autre animal à trouver son chemin. Cela leur permet de se rendre à un point de l'espace à un autre. De manière basique, le processus fait appel à quatre étapes : L'orientation au niveau du point de départ est la capacité à déterminer la position initiale, notamment en s'aidant de l'environnement et des points de repère qui lui sont particuliers.
Automated machine learningAutomated machine learning (AutoML) is the process of automating the tasks of applying machine learning to real-world problems. AutoML potentially includes every stage from beginning with a raw dataset to building a machine learning model ready for deployment. AutoML was proposed as an artificial intelligence-based solution to the growing challenge of applying machine learning. The high degree of automation in AutoML aims to allow non-experts to make use of machine learning models and techniques without requiring them to become experts in machine learning.
Système de classeursUn système de classeurs (Learning Classifier System ou LCS en anglais) est un système d'apprentissage automatique utilisant l'apprentissage par renforcement et les algorithmes génétiques. Ils ont été introduits par Holland en 1977 et développé par Goldberg en 1989 Un système de classeurs (aussi appelé classifiers) est composé d'une base de règles, appelée classeur, associés à un poids. Chaque règle est composée d'une partie condition et d'une partie action. Le classeur commence par être initialisé (aléatoirement ou non).
Scikit-learnScikit-learn est une bibliothèque libre Python destinée à l'apprentissage automatique. Elle est développée par de nombreux contributeurs notamment dans le monde académique par des instituts français d'enseignement supérieur et de recherche comme Inria. Elle propose dans son framework de nombreuses bibliothèques d’algorithmes à implémenter, clé en main. Ces bibliothèques sont à disposition notamment des data scientists. Elle comprend notamment des fonctions pour estimer des forêts aléatoires, des régressions logistiques, des algorithmes de classification, et les machines à vecteurs de support.
Classement automatiquevignette|La fonction 1-x^2-2exp(-100x^2) (rouge) et les valeurs déplacées par un bruit de 0,1*N(0,1). Le classement automatique ou classification supervisée est la catégorisation algorithmique d'objets. Elle consiste à attribuer une classe ou catégorie à chaque objet (ou individu) à classer, en se fondant sur des données statistiques. Elle fait couramment appel à l'apprentissage automatique et est largement utilisée en reconnaissance de formes. En français, le classement fait référence à l'action de classer donc de « ranger dans une classe ».
NeurofeedbackLe neurofeedback est un type de biofeedback au cours duquel l'activité neuronale d’un individu est mesurée et lui est présentée en temps réel (sous différentes formes : son, image, etc.). Le but de cette méthode est que l’individu arrive à autoréguler son activité neuronale supposée sous-tendre un comportement ou une pathologie spécifique. De cette manière, avec le temps, le participant pourrait être capable d’apprendre comment contrôler volontairement l’activation de son cortex cérébral afin de réguler sa cognition et ses comportements dans la vie de tous les jours.
Réalité virtuellevignette|250x250px|Personnel de l'U.S. Navy utilisant un simulateur de parachute. L'expression « réalité virtuelle » (ou multimédia immersif ou réalité simulée par ordinateur) renvoie typiquement à une technologie informatique qui simule la présence physique d'un utilisateur dans un environnement artificiellement généré par des logiciels. La réalité virtuelle crée un environnement avec lequel l'utilisateur peut interagir. La réalité virtuelle reproduit donc artificiellement une expérience sensorielle, qui peut inclure la vue, le toucher, l'ouïe et l'odorat (visuelle, sonore ou haptique).
Cognitive mapA cognitive map is a type of mental representation which serves an individual to acquire, code, store, recall, and decode information about the relative locations and attributes of phenomena in their everyday or metaphorical spatial environment. The concept was introduced by Edward Tolman in 1948. He tried to explain the behavior of rats that appeared to learn the spatial layout of a maze, and subsequently the concept was applied to other animals, including humans.
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.