**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Challenges and Opportunities of Edge AI for Next-Generation Implantable BMIs

Résumé

Neuroscience and neurotechnology are currently being revolutionized by artificial intelligence (AI) and machine learning. AI is widely used to study and interpret neural signals (analytical applications), assist people with disabilities (prosthetic applications), and treat underlying neurological symptoms (therapeutic applications). In this brief, we will review the emerging opportunities of on-chip AI for the next-generation implantable brain machine interfaces (BMIs), with a focus on state-of-the-art prosthetic BMIs. Major technological challenges for the effectiveness of AI models will be discussed. Finally, we will present algorithmic and IC design solutions to enable a new generation of AI-enhanced and high-channel-count BMIs.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Publications associées (10)

Chargement

Chargement

Chargement

Concepts associés (16)

Intelligence artificielle

vignette|redresse=0.8|Les assistants personnels intelligents sont l'une des applications concrètes de l'intelligence artificielle dans les années 2010.
L'intelligence artificielle (IA) est un ensembl

Apprentissage automatique

L'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est

Génération (sciences sociales)

vignette|redresse|Rupture entre les générations (Oran, Algérie, 2015).
La génération est un concept en sciences sociales utilisé en démographie pour désigner une sous-population dont les membres, aya

Machine Learning is a modern and actively developing field of computer science, devoted to extracting and estimating dependencies from empirical data. It combines such fields as statistics, optimization theory and artificial intelligence. In practical tasks, the general aim of Machine Learning is to construct algorithms able to generalize and predict in previously unseen situations based on some set of examples. Given some finite information, Machine Learning provides ways to exract knowledge, describe, explain and predict from data. Kernel Methods are one of the most successful branches of Machine Learning. They allow applying linear algorithms with well-founded properties such as generalization ability, to non-linear real-life problems. Support Vector Machine is a well-known example of a kernel method, which has found a wide range of applications in data analysis nowadays. In many practical applications, some additional prior knowledge is often available. This can be the knowledge about the data domain, invariant transformations, inner geometrical structures in data, some properties of the underlying process, etc. If used smartly, this information can provide significant improvement to any data processing algorithm. Thus, it is important to develop methods for incorporating prior knowledge into data-dependent models. The main objective of this thesis is to investigate approaches towards learning with kernel methods using prior knowledge. Invariant learning with kernel methods is considered in more details. In the first part of the thesis, kernels are developed which incorporate prior knowledge on invariant transformations. They apply when the desired transformation produce an object around every example, assuming that all points in the given object share the same class. Different types of objects, including hard geometrical objects and distributions are considered. These kernels were then applied for images classification with Support Vector Machines. Next, algorithms which specifically include prior knowledge are considered. An algorithm which linearly classifies distributions by their domain was developed. It is constructed such that it allows to apply kernels to solve non-linear tasks. Thus, it combines the discriminative power of support vector machines and the well-developed framework of generative models. It can be applied to a number of real-life tasks which include data represented as distributions. In the last part of the thesis, the use of unlabelled data as a source of prior knowledge is considered. The technique of modelling the unlabelled data with a graph is taken as a baseline from semi-supervised manifold learning. For classification problems, we use this apporach for building graph models of invariant manifolds. For regression problems, we use unlabelled data to take into account the inner geometry of the input space. To conclude, in this thesis we developed a number of approaches for incorporating some prior knowledge into kernel methods. We proposed invariant kernels for existing algorithms, developed new algorithms and adapted a technique taken from semi-supervised learning for invariant learning. In all these cases, links with related state-of-the-art approaches were investigated. Several illustrative experiments were carried out on real data on optical character recognition, face image classification, brain-computer interfaces, and a number of benchmark and synthetic datasets.

Machine Learning is a modern and actively developing field of computer science, devoted to extracting and estimating dependencies from empirical data. It combines such fields as statistics, optimization theory and artificial intelligence. In practical tasks, the general aim of Machine Learning is to construct algorithms able to generalize and predict in previously unseen situations based on some set of examples. Given some finite information, Machine Learning provides ways to exract knowledge, describe, explain and predict from data. Kernel Methods are one of the most successful branches of Machine Learning. They allow applying linear algorithms with well-founded properties such as generalization ability, to non-linear real-life problems. Support Vector Machine is a well-known example of a kernel method, which has found a wide range of applications in data analysis nowadays. In many practical applications, some additional prior knowledge is often available. This can be the knowledge about the data domain, invariant transformations, inner geometrical structures in data, some properties of the underlying process, etc. If used smartly, this information can provide significant improvement to any data processing algorithm. Thus, it is important to develop methods for incorporating prior knowledge into data-dependent models. The main objective of this thesis is to investigate approaches towards learning with kernel methods using prior knowledge. Invariant learning with kernel methods is considered in more details. In the first part of the thesis, kernels are developed which incorporate prior knowledge on invariant transformations. They apply when the desired transformation produce an object around every example, assuming that all points in the given object share the same class. Different types of objects, including hard geometrical objects and distributions are considered. These kernels were then applied for images classification with Support Vector Machines. Next, algorithms which specifically include prior knowledge are considered. An algorithm which linearly classifies distributions by their domain was developed. It is constructed such that it allows to apply kernels to solve non-linear tasks. Thus, it combines the discriminative power of support vector machines and the well-developed framework of generative models. It can be applied to a number of real-life tasks which include data represented as distributions. In the last part of the thesis, the use of unlabelled data as a source of prior knowledge is considered. The technique of modelling the unlabelled data with a graph is taken as a baseline from semi-supervised manifold learning. For classification problems, we use this apporach for building graph models of invariant manifolds. For regression problems, we use unlabelled data to take into account the inner geometry of the input space. To conclude, in this thesis we developed a number of approaches for incorporating some prior knowledge into kernel methods. We proposed invariant kernels for existing algorithms, developed new algorithms and adapted a technique taken from semi-supervised learning for invariant learning. In all these cases, links with related state-of-the-art approaches were investigated. Several illustrative experiments were carried out on real data on optical character recognition, face image classification, brain-computer interfaces, and a number of benchmark and synthetic datasets.

In the last decade, deep neural networks have achieved tremendous success in many fields of machine learning.However, they are shown vulnerable against adversarial attacks: well-designed, yet imperceptible, perturbations can make the state-of-the-art deep neural networks output incorrect results.Understanding adversarial attacks and designing algorithms to make deep neural networks robust against these attacks are key steps to building reliable artificial intelligence in real-life applications.In this thesis, we will first formulate the robust learning problem.Based on the notations of empirical robustness and verified robustness, we design new algorithms to achieve both of these types of robustness.Specifically, we investigate the robust learning problem from the optimization perspectives.Compared with classic empirical risk minimization, we show the slow convergence and large generalization gap in robust learning.Our theoretical and numerical analysis indicates that these challenges arise, respectively, from non-smooth loss landscapes and model's fitting hard adversarial instances.Our insights shed some light on designing algorithms for mitigating these challenges.Robust learning has other challenges, such as large model capacity requirements and high computational complexity.To solve the model capacity issue, we combine robust learning with model compression.We design an algorithm to obtain sparse and binary neural networks and make it robust.To decrease the computational complexity, we accelerate the existing adversarial training algorithm and preserve its performance stability.In addition to making models robust, our research provides other benefits.Our methods demonstrate that robust models, compared with non-robust ones, usually utilize input features in a way more similar to the way human beings use them, hence the robust models are more interpretable.To obtain verified robustness, our methods indicate the geometric similarity of the decision boundaries near data points.Our approaches towards reliable artificial intelligence can not only render deep neural networks more robust in safety-critical applications but also make us better aware of how they work.