Interpolation polynomialeEn mathématiques, en analyse numérique, l'interpolation polynomiale est une technique d'interpolation d'un ensemble de données ou d'une fonction par un polynôme. En d'autres termes, étant donné un ensemble de points (obtenu, par exemple, à la suite d'une expérience), on cherche un polynôme qui passe par tous ces points, p(xi) = yi, et éventuellement vérifie d'autres conditions, de degré si possible le plus bas. Cependant, dans le cas de l'interpolation lagrangienne, par exemple, le choix des points d'interpolation est critique.
Interpolation multivariéeEn analyse numérique, linterpolation multivariée ou linterpolation spatiale désigne l'interpolation numérique de fonctions de plus d'une variable. Le problème est similaire à celui de l'interpolation polynomiale sur un intervalle réel : on connait les valeurs d'une fonction à interpoler aux points et l'objectif consiste à évaluer la valeur de la fonction en des points . L'interpolation multivariée est notamment utilisée en géostatistique, où elle est utilisée pour reconstruire les valeurs d'une variable régionalisée sur un domaine à partir d'échantillons connus en un nombre limité de points.
Deviation (statistics)In mathematics and statistics, deviation is a measure of difference between the observed value of a variable and some other value, often that variable's mean. The sign of the deviation reports the direction of that difference (the deviation is positive when the observed value exceeds the reference value). The magnitude of the value indicates the size of the difference. Errors and residuals A deviation that is a difference between an observed value and the true value of a quantity of interest (where true value denotes the Expected Value, such as the population mean) is an error.
Interpolation au plus proche voisinLinterpolation au plus proche voisin (ou interpolation arrondie) est une méthode simple d'interpolation numérique d'un ensemble de points en dimension 1 ou supérieure (interpolation multivariée). Le problème de l'interpolation consiste à calculer une valeur approchée d'une fonction en un point quelconque à partir des valeurs de la fonction données en des points définis. L'algorithme du plus proche voisin détermine la valeur recherchée comme étant égale à la valeur au point le plus proche, sans considérer les autres valeurs connues, construisant ainsi une fonction constante par morceaux.
ÉlectroencéphalographieL'électroencéphalographie (EEG) est une méthode d'exploration cérébrale qui mesure l'activité électrique du cerveau par des électrodes placées sur le cuir chevelu souvent représentée sous la forme d'un tracé appelé électroencéphalogramme. Comparable à l'électrocardiogramme qui permet d'étudier le fonctionnement du cœur, l'EEG est un examen indolore et non invasif qui renseigne sur l'activité neurophysiologique du cerveau au cours du temps et en particulier du cortex cérébral soit dans un but diagnostique en neurologie, soit dans la recherche en neurosciences cognitives.
Interpolation bilinéaireL'interpolation bilinéaire est une méthode d'interpolation pour les fonctions de deux variables sur une grille régulière. Elle permet de calculer la valeur d'une fonction en un point quelconque, à partir de ses deux plus proches voisins dans chaque direction. C'est une méthode très utilisée en pour le , qui permet d'obtenir de meilleurs résultats que l'interpolation par plus proche voisin, tout en restant de complexité raisonnable.
Interpolation d'Hermitethumb|Comparaison graphique entre interpolation lagrangienne (en rouge) et hermitienne (en bleu) de la fonction (en noir) en trois points équidistants -1, 1/2, 2. En analyse numérique, l'interpolation d'Hermite, nommée d'après le mathématicien Charles Hermite, est une extension de l'interpolation de Lagrange, qui consiste, pour une fonction dérivable donnée et un nombre fini de points donnés, à construire un polynôme qui est à la fois interpolateur (c'est-à-dire dont les valeurs aux points donnés coïncident avec celles de la fonction) et osculateur (c'est-à-dire dont les valeurs de la dérivée aux points donnés coïncident avec celles de la dérivée de la fonction).
Système embarquéUn système embarqué est un système électronique et informatique autonome, souvent temps réel, spécialisé dans une tâche précise. Le terme désigne aussi bien le matériel informatique que le logiciel utilisé. Ses ressources sont généralement limitées spatialement (encombrement réduit) et énergétiquement (consommation restreinte). L'un des premiers systèmes modernes embarqués reconnaissables a été le Apollo Guidance Computer en 1967, le système de guidage de la mission lunaire Apollo, développé par Charles Stark Draper du Massachusetts Institute of Technology.
Estimation de mouvementL'estimation de mouvement ou Motion estimation est un procédé qui consiste à étudier le déplacement des objets dans une séquence vidéo, en cherchant la corrélation entre deux images successives afin de prédire le changement de position du contenu. Le mouvement est un problème mal posé en vidéo puisqu'il décrit un contexte en trois dimensions alors que les images sont une projection de scènes 3D dans un plan en 2D. En général, il est représenté par un vecteur de mouvement qui décrit une transformation d'une image en deux dimensions vers une autre.
Unbiased estimation of standard deviationIn statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the calculation equals the true value. Except in some important situations, outlined later, the task has little relevance to applications of statistics since its need is avoided by standard procedures, such as the use of significance tests and confidence intervals, or by using Bayesian analysis.