Résonance magnétique nucléairevignette|175px|Spectromètre de résonance magnétique nucléaire. L'aimant de 21,2 T permet à l'hydrogène (H) de résonner à . La résonance magnétique nucléaire (RMN) est une propriété de certains noyaux atomiques possédant un spin nucléaire (par exemple H, C, O, F, P, Xe...), placés dans un champ magnétique. Lorsqu'ils sont soumis à un rayonnement électromagnétique (radiofréquence), le plus souvent appliqué sous forme d'impulsions, les noyaux atomiques peuvent absorber l'énergie du rayonnement puis la relâcher lors de la relaxation.
Spectroscopie RMNvignette|redresse|Spectromètre RMN avec passeur automatique d'échantillons utilisé en chimie organique pour la détermination des structures chimiques. vignette|redresse|Animation présentant le principe de la Résonance Magnétique Nucléaire (RMN). La spectroscopie RMN est une technique qui exploite les propriétés magnétiques de certains noyaux atomiques. Elle est basée sur le phénomène de résonance magnétique nucléaire (RMN), utilisé également en sous le nom d’.
Solid-state nuclear magnetic resonanceSolid-state NMR (ssNMR) spectroscopy is a technique for characterizing atomic level structure in solid materials e.g. powders, single crystals and amorphous samples and tissues using nuclear magnetic resonance (NMR) spectroscopy. The anisotropic part of many spin interactions are present in solid-state NMR, unlike in solution-state NMR where rapid tumbling motion averages out many of the spin interactions.
Nuclear magnetic resonance spectroscopy of proteinsNuclear magnetic resonance spectroscopy of proteins (usually abbreviated protein NMR) is a field of structural biology in which NMR spectroscopy is used to obtain information about the structure and dynamics of proteins, and also nucleic acids, and their complexes. The field was pioneered by Richard R. Ernst and Kurt Wüthrich at the ETH, and by Ad Bax, Marius Clore, Angela Gronenborn at the NIH, and Gerhard Wagner at Harvard University, among others.
Effet Overhauser nucléaireEn spectroscopie RMN, l'effet Overhauser nucléaire décrit une interaction entre deux spins à travers l'espace et non pas à travers les liaisons chimiques comme le couplage scalaire. Cette interaction est limitée à environ 5-6 Å. En anglais, cet effet s'appelle "Nuclear Overhauser Effect", soit NOE. Cet acronyme est souvent utilisé en français sous l'expression "effet NOE". Une des conséquences de la résonance magnétique nucléaire est l'interaction dipôle-dipôle à travers l'espace.
SpectroscopieLa spectroscopie, ou spectrométrie, est l'étude expérimentale du spectre d'un phénomène physique, c'est-à-dire de sa décomposition sur une échelle d'énergie, ou toute autre grandeur se ramenant à une énergie (fréquence, longueur d'onde). Historiquement, ce terme s'appliquait à la décomposition, par exemple par un prisme, de la lumière visible émise (spectrométrie d'émission) ou absorbée (spectrométrie d'absorption) par l'objet à étudier.
Spectroscopie RMN en deux dimensionsLa spectroscopie RMN en deux dimensions ou spectroscopie RMN bidimensionnelle ou encore RMN-2D est un ensemble de dispositifs de reconnaissance de relations de proximité, dans l'espace ou à travers les liaisons, entre plusieurs noyaux actifs en RMN. Il s'agit de RMN de corrélation. Dans une expérience de spectroscopie RMN bidimensionnelle, le résultat est un spectre en trois dimensions : le déplacement chimique pour le noyau 1 (δ1), le déplacement chimique pour le noyau 2 (δ2) et l'intensité du signal.
Spectroscopie RamanLa spectroscopie Raman (ou spectrométrie Raman) et la microspectroscopie Raman sont des méthodes non destructives d'observation et de caractérisation de la composition moléculaire et de la structure externe d'un matériau, qui exploite le phénomène physique selon lequel un milieu modifie légèrement la fréquence de la lumière y circulant. Ce décalage en fréquence dit l'effet Raman correspond à un échange d'énergie entre le rayon lumineux et le milieu, et donne des informations sur le substrat lui-même.
Resonance Raman spectroscopyResonance Raman spectroscopy (RR spectroscopy or RRS) is a variant of Raman spectroscopy in which the incident photon energy is close in energy to an electronic transition of a compound or material under examination. This similarity in energy (resonance) leads to greatly increased intensity of the Raman scattering of certain vibrational modes, compared to ordinary Raman spectroscopy. Resonance Raman spectroscopy has much greater sensitivity than non-resonance Raman spectroscopy, allowing for the analysis of compounds with inherently weak Raman scattering intensities, or at very low concentrations.
Spectroscopie ultraviolet-visibleLa spectroscopie ultraviolet-visible ou spectrométrie ultraviolet-visible est une technique de spectroscopie mettant en jeu les photons dont les longueurs d'onde sont dans le domaine de l'ultraviolet ( - ), du visible ( - ) ou du proche infrarouge ( - ). Soumis à un rayonnement dans cette gamme de longueurs d'onde, les molécules, les ions ou les complexes sont susceptibles de subir une ou plusieurs transitions électroniques. Cette spectroscopie fait partie des méthodes de spectroscopie électronique.