Statistical parameterIn statistics, as opposed to its general use in mathematics, a parameter is any measured quantity of a statistical population that summarises or describes an aspect of the population, such as a mean or a standard deviation. If a population exactly follows a known and defined distribution, for example the normal distribution, then a small set of parameters can be measured which completely describes the population, and can be considered to define a probability distribution for the purposes of extracting samples from this population.
Polarisation (optique)La polarisation est une propriété qu'ont les ondes vectorielles (ondes qui peuvent osciller selon plus d'une orientation) de présenter une répartition privilégiée de l'orientation des vibrations qui les composent. Les ondes électromagnétiques, telles que la lumière, ou les ondes gravitationnelles ont ainsi des propriétés de polarisation. Les ondes mécaniques transverses dans les solides peuvent aussi être polarisées. Cependant, les ondes longitudinales (telles que les ondes sonores) ne sont pas concernées.
Tendances périodiquesvignette|313x313px|Les tendances périodiques des propriétés des éléments. Les tendances périodiques sont des patterns d'évolution de certaines propriétés des éléments à travers le tableau périodique. Ils ont été découverts par le chimiste russe Dmitri Mendeleïev en 1863. Les tendances principales sont le rayon atomique, l'énergie d'ionisation, l'affinité électronique, l'électronégativité, la valence et le caractère métallique. Ces tendances donnent une évaluation qualitative des propriétés des éléments.
Maximum spacing estimationIn statistics, maximum spacing estimation (MSE or MSP), or maximum product of spacing estimation (MPS), is a method for estimating the parameters of a univariate statistical model. The method requires maximization of the geometric mean of spacings in the data, which are the differences between the values of the cumulative distribution function at neighbouring data points.
Tableau périodique des élémentsvignette|400px|Tableau périodique des éléments au . 400px|vignette|Avec davantage de détails par élément. Le tableau périodique des éléments, également appelé tableau ou table de Mendeleïev, classification périodique des éléments ou simplement tableau périodique, représente tous les éléments chimiques, ordonnés par numéro atomique croissant et organisés en fonction de leur configuration électronique, laquelle sous-tend leurs propriétés chimiques.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Domaine fréquentielLe domaine fréquentiel se rapporte à l'analyse de fonctions mathématiques ou de signaux physiques manifestant une fréquence. Alors qu'un graphe dans le domaine temporel présentera les variations dans l'allure d'un signal au cours du temps, un graphe dans le domaine fréquentiel montrera quelle proportion du signal appartient à telle ou telle bande de fréquence, parmi plusieurs bancs. Une représentation dans le domaine fréquentiel peut également inclure des informations sur le décalage de phase qui doit être appliqué à chaque sinusoïde afin de reconstruire le signal en domaine temporel.
Geometric Brownian motionA geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model.
Point estimationIn statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.
Analyse harmonique (mathématiques)thumb|upright=1.2|Analyseur harmonique mécanique de Lord Kelvin datant de 1878. L'analyse harmonique est la branche des mathématiques qui étudie la représentation des fonctions ou des signaux comme superposition d'ondes de base. Elle approfondit et généralise les notions de série de Fourier et de transformée de Fourier. Les ondes de base s'appellent les harmoniques, d'où le nom de la discipline.