Convenience samplingConvenience sampling (also known as grab sampling, accidental sampling, or opportunity sampling) is a type of non-probability sampling that involves the sample being drawn from that part of the population that is close to hand. This type of sampling is most useful for pilot testing. Convenience sampling is not often recommended for research due to the possibility of sampling error and lack of representation of the population. But it can be handy depending on the situation. In some situations, convenience sampling is the only possible option.
Sampling errorIn statistics, sampling errors are incurred when the statistical characteristics of a population are estimated from a subset, or sample, of that population. It can produced biased results. Since the sample does not include all members of the population, statistics of the sample (often known as estimators), such as means and quartiles, generally differ from the statistics of the entire population (known as parameters). The difference between the sample statistic and population parameter is considered the sampling error.
Nonprobability samplingSampling is the use of a subset of the population to represent the whole population or to inform about (social) processes that are meaningful beyond the particular cases, individuals or sites studied. Probability sampling, or random sampling, is a sampling technique in which the probability of getting any particular sample may be calculated. In cases where external validity is not of critical importance to the study's goals or purpose, researchers might prefer to use nonprobability sampling.
Survey samplingIn statistics, survey sampling describes the process of selecting a sample of elements from a target population to conduct a survey. The term "survey" may refer to many different types or techniques of observation. In survey sampling it most often involves a questionnaire used to measure the characteristics and/or attitudes of people. Different ways of contacting members of a sample once they have been selected is the subject of survey data collection.
Pollution lumineuseLa pollution lumineuse est à la fois la présence nocturne anormale ou gênante de lumière et les conséquences de l'éclairage artificiel nocturne sur la faune, la flore, la fonge (le règne des champignons), les écosystèmes ainsi que les effets suspectés ou avérés sur la santé humaine. Comme celle de pollution du ciel nocturne qui la remplace parfois et qui désigne particulièrement la disparition des étoiles du ciel nocturne en milieu urbain, la notion de pollution lumineuse est apparue dans la deuxième moitié du et a évolué depuis.
Business simulationBusiness simulation or corporate simulation is simulation used for business training, education or analysis. It can be scenario-based or numeric-based. Most business simulations are used for business acumen training and development. Learning objectives include: strategic thinking, decision making, problem solving, financial analysis, market analysis, operations, teamwork and leadership. The business gaming community seems lately to have adopted the term business simulation game instead of just gaming or just simulation.
Hypothèse de simulationvignette|The Matrix - Capture d'écran du célèbre économiseur d'écran GLMatrix L'hypothèse de simulation énonce que la réalité observable a pour trame une simulation, semblable à celles de nos ordinateurs, sans que les entités y évoluant puissent la distinguer commodément de la vraie réalité. Cette hypothèse repose elle-même sur le développement de la réalité simulée, actuellement considérée comme une technologie fictive et gravitant autour de nombreuses œuvres de science-fiction, telles Star Trek, eXistenZ, Passé virtuel ou Matrix.
Discrete wavelet transformIn numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time). Haar wavelet The first DWT was invented by Hungarian mathematician Alfréd Haar. For an input represented by a list of numbers, the Haar wavelet transform may be considered to pair up input values, storing the difference and passing the sum.
Méthode sans maillageIn the field of numerical analysis, meshfree methods are those that do not require connection between nodes of the simulation domain, i.e. a mesh, but are rather based on interaction of each node with all its neighbors. As a consequence, original extensive properties such as mass or kinetic energy are no longer assigned to mesh elements but rather to the single nodes. Meshfree methods enable the simulation of some otherwise difficult types of problems, at the cost of extra computing time and programming effort.
Stochastic simulationA stochastic simulation is a simulation of a system that has variables that can change stochastically (randomly) with individual probabilities. Realizations of these random variables are generated and inserted into a model of the system. Outputs of the model are recorded, and then the process is repeated with a new set of random values. These steps are repeated until a sufficient amount of data is gathered. In the end, the distribution of the outputs shows the most probable estimates as well as a frame of expectations regarding what ranges of values the variables are more or less likely to fall in.