CovarianceEn théorie des probabilités et en statistique, la covariance entre deux variables aléatoires est un nombre permettant de quantifier leurs écarts conjoints par rapport à leurs espérances respectives. Elle s’utilise également pour deux séries de données numériques (écarts par rapport aux moyennes). La covariance de deux variables aléatoires indépendantes est nulle, bien que la réciproque ne soit pas toujours vraie. La covariance est une extension de la notion de variance.
Bootstrap (statistiques)En statistiques, les techniques de bootstrap sont des méthodes d'inférence statistique basées sur la réplication multiple des données à partir du jeu de données étudié, selon les techniques de rééchantillonnage. Elles datent de la fin des années 1970, époque où la possibilité de calculs informatiques intensifs devient abordable. On calculait depuis près d'un siècle des estimations : mesures de dispersion (variance, écart-type), intervalles de confiance, tables de décision pour des tests d'hypothèse, etc.
Qualité de l'ajustementThe goodness of fit of a statistical model describes how well it fits a set of observations. Measures of goodness of fit typically summarize the discrepancy between observed values and the values expected under the model in question. Such measures can be used in statistical hypothesis testing, e.g. to test for normality of residuals, to test whether two samples are drawn from identical distributions (see Kolmogorov–Smirnov test), or whether outcome frequencies follow a specified distribution (see Pearson's chi-square test).
Data dredgingvignette|Exemple de Data dredging. Le data dredging (littéralement le dragage de données mais mieux traduit comme étant du triturage de données) est une technique statistique qui . Une des formes du data dredging est de partir de données ayant un grand nombre de variables et un grand nombre de résultats, et de choisir les associations qui sont « statistiquement significatives », au sens de la valeur p (on parle aussi de p-hacking).
Test d'intégrationDans le monde du développement informatique, L'objectif de chaque phase de test est de détecter les erreurs qui n'ont pas pu être détectées lors de la précédente phase. Pour cela, le test d’intégration a pour cible de détecter les erreurs non détectables par le test unitaire. Le test d’intégration permet également de vérifier l'aspect fonctionnel, les performances et la fiabilité du logiciel. L'intégration fait appel en général à un système de gestion de versions, et éventuellement à des programmes d'installation.
Finitely generated moduleIn mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.
False discovery rateIn statistics, the false discovery rate (FDR) is a method of conceptualizing the rate of type I errors in null hypothesis testing when conducting multiple comparisons. FDR-controlling procedures are designed to control the FDR, which is the expected proportion of "discoveries" (rejected null hypotheses) that are false (incorrect rejections of the null). Equivalently, the FDR is the expected ratio of the number of false positive classifications (false discoveries) to the total number of positive classifications (rejections of the null).
Purely functional data structureIn computer science, a purely functional data structure is a data structure that can be directly implemented in a purely functional language. The main difference between an arbitrary data structure and a purely functional one is that the latter is (strongly) immutable. This restriction ensures the data structure possesses the advantages of immutable objects: (full) persistency, quick copy of objects, and thread safety. Efficient purely functional data structures may require the use of lazy evaluation and memoization.
Cross-covarianceIn probability and statistics, given two stochastic processes and , the cross-covariance is a function that gives the covariance of one process with the other at pairs of time points. With the usual notation for the expectation operator, if the processes have the mean functions and , then the cross-covariance is given by Cross-covariance is related to the more commonly used cross-correlation of the processes in question.
Lissage (mathématiques)vignette|Exemple de lissage d'une courbe. La courbe bleue joint des données brutes de la température moyenne quotidienne à la station météo de Paris-Montsouris (France) du 1960/01/01 au 1960/02/29. La courbe orange est obtenue avec un lissage exponentiel simple et un facteur alpha = 0.1. Le lissage est une technique qui consiste à réduire les irrégularités et singularités d'une courbe en mathématiques. Cette technique est utilisée en traitement du signal pour atténuer ce qui peut être considéré comme une perturbation ou un bruit de mesure.